Рефрактометрический метод анализа в химии
Обозначение показателя преломления от условий его определения
Таблица 1
Линия спектра водорода |
Индекс линии |
λ, нм |
Обозначение показателя преломления |
жёлтая |
D |
589,3 |
nD |
красная |
C |
656,3 |
nC |
синяя |
F |
486,1 |
nF |
фиолетовая |
G |
434,0 |
nG |
В рефрактометрии часто используется показатель n∞, значение которого определяют экстраполяцией зависимости n = f(λ) до бесконечно больших длин волн. Такая экстраполяция осуществляется обычно по формуле Коши:
n = n∞ + b/λ. (6)
Константы n∞ и b определяют, измерив n при разных λ (например λF и λС – линий спектра водорода). В большинстве случаев определяют не n∞, а nD желтой линии спектра натрия (D-линии).
На практике используются три способа выражения дисперсии света.
1. Средняя дисперсия:
ΔnFC = (nF − nC)∙104. (7)
2. Коэффициент дисперсии или число Аббе:
(8)
3. Удельная дисперсия:
(9)
где ρ – плотность вещества.
Средняя дисперсия, nF – nC, частные дисперсии и число Аббе служат важнейшими характеристиками оптических материалов. Относительная дисперсия и родственные ей функции применяют для групповой идентификации углеводородов и анализа нефтяных фракций.
Поскольку показатель преломления изменяется с изменением температуры и длины волны света (который, безусловно, не должен поглощаться веществом), то первое условие должно быть, строго говоря, оговорено, но на самом деле изменение величины R в зависимости от температуры вполне укладывается в рамки ошибок эксперимента, и поэтому температуру указывать не обязательно.
Наиболее часто используемыми длинами волн являются Нα-линии при 653,3 нм, Нβ-линия при 486,1 нм и D-линия натрия на 589,3, и значения R вполне чётко зависят от того, какая линия выбрана.
Если нужно определить молекулярную рефракцию твёрдого вещества, то прибегают к модифицированному уравнению, учитывающему изменение показателя преломления с концентрацией раствора.
1.4 Полное внутреннее отражение
Рис.2. Схема направления распространения лучей при полном внутреннем отражении
b0Oa0 – распространение луча при предельном угле;
b′Oa′ - распространение лучей при полном внутреннем отражении
Если луч света распространяется из более плотной среды В в менее плотную среду А (рис.2), то при некотором угле β = β0 угол преломления α достигнет максимального значения α0 = 900. Далее луч будет распростра-няться вдоль поверхности раздела сред и выражение (2) примет следующий вид:
.
Если направить луч в среду В (рис. 2) под углом β > β0, то он вообще не попадёт в среду А, отразившись от поверхности раздела (рис. 2). Это явление называется полным внутренним отражением, а угол β0 – предельным углом.
На измерении предельного угла основан принцип работы рефрактометров.
2. Дипольные моменты и рефракция
Коэффициент преломления, как уже отмечалось, зависит от поляризуемости атомов, молекул и ионов. Поэтому исследование электрических характеристик вещества даёт важную информацию о распределении зарядов в молекуле и позволяет установить некоторые свойства вещества, обусловленные его электрической асимметрией.
Рассмотрим некоторые вопросы, касающиеся природы возникновения дипольного момента в молекуле.
2.1 Поляризуемость и дипольный момент
Любая молекула представляет собой совокупность положительно заряженных ядер и отрицательно заряженных электронов. При суммарном заряде, равном +е, заряд всех электронов будет равен –е .
Если распределение ядер и электронов в пространстве таково, что центры "тяжести" положительных и отрицательных зарядов не совпадают, то молекула обладает постоянным дипольным моментом:
μ =е∙l, (10)
где l – расстояние между центрами электрических зарядов.
Такая молекула является полярной. Мерой полярности молекулы служит величина дипольного момента, которую выражают в дебаях (D):
D = 3,33564·10−30 Кл·м
Дипольный момент – величина векторная. Направление вектора "→"выбирается от отрицательного полюса к положительному. В химической литературе, однако, традиционно принимается противоположное направление, т. е. от "+" к "−".
Если в двухатомных молекулах простых веществ, т. е. состоящих из одинаковых атомов, и в многоатомных молекулах сложных веществ, обладающих высокой симметрией, центры "тяжести" разноимённых электрических зарядов совпадают (l = 0), то такие молекулы не обладают постоянным моментом (μ = 0) и являются неполярными.
Если любую неполярную молекулу поместить в постоянное электрическое поле, создаваемое, например, конденсатором, то происходит её поляризация, выражающаяся в разнонаправленном смещении зарядов (деформационная поляризация). Тяжёлые ядра атомов будут несколько смещаться в сторону отрицательного полюса, а электроны незначительной массой будут легко смещаться в сторону положительного полюса. В результате центры "тяжести" положительных и отрицательных зарядов совпадать не будут, и в молекуле будет возникать индуцированный (наведённый) диполь, момент которого пропорционален напряжённости электрического поля:
μинд = αD∙Е, (11)
где Е – напряжённость внутреннего электрического поля в молекуле [эл. ст. ед./см2; Кл/см2]
αD – коэффициент пропорциональности, который показывает, какой дипольный момент создается при напряжённости электрического поля равной единице. Чем больше αD, тем легче поляризуется молекула. Коэффициент αD, называемый деформационной поляризуемостью, равен сумме электронной αD и атомной поляризуемостей αат:
αD = αэл + αат (12)
Чем дальше удалены внешние (более подвижные) валентные электроны от атомных ядер, тем выше электронная поляризуемость молекулы. Так как смещение атомных ядер незначительно (αат составляет 5 – 10 % от αэл ) и им можно пренебречь, то приближённо будет αD = αэл.