Рефрактометрический метод анализа в химии
Рефераты >> Химия >> Рефрактометрический метод анализа в химии

Оглавление

Введение

1. Некоторые понятия физической оптики

1.1 Распространение света

1.2 Показатель преломления света (показатель рефракции)

1.3 Дисперсия света

1.4 Полное внутреннее отражение

2. Дипольные моменты и рефракция

2.1 Поляризуемость и дипольный момент

2.1.1 Молярная поляризуемость

2.2 Молярная рефракция

3. Рефракция и структура молекул

3.1 Аддитивность рефракции

3.2 Оптическая экзальтация

3.3 Дисперсия молекулярной рефракции

3.4 Рефракция и размеры молекул

4. Рефрактометрия растворов

4.1 Анализ двухкомпонентных растворов

4.2 Анализ трёхкомпонентных растворов

5. Рефрактометрия полимеров

Заключение

Список используемой литературы

Введение

Рефрактометрический метод имеет многолетнюю историю применения в химии.

Рефрактометрия (от латинского refraktus – преломлённый и греческого metréō – мерю, измеряю) – это раздел прикладной оптики, в котором рассматриваются методы измерения показателя преломления света (n) при переходе из одной фазы в другую, или, иными словами, показатель преломления n – это отношение скоростей света в граничащих средах.

Применительно к химии рефракция имеет более широкое смысловое значение. Рефракция R (от латинского refractio – преломление) есть мера электронной поляризуемости атомов, молекул, ионов.

Поляризация электронных облаков в молекулах отчётливо проявляется в инфракрасном (ИК) и ультрафиолетовом (УФ) поглощении веществ, но в ещё большей степени она ответственна за явление, которое количественно характеризуется молекулярной рефракцией.

Когда свет как электромагнитное излучение проходит через вещество, то даже в отсутствие прямого поглощения он может взаимодействовать с электронными облаками молекул или ионов, вызывая их поляризацию. Взаимодействие электромагнитных полей светового пучка и электронного поля атома приводит к изменению поляризации молекулы и скорости светового потока. По мере возрастания поляризуемости среды возрастает и n – показатель, величина которого связана с молекулярной рефракцией. Указанное явление используется наряду с методом дипольных моментов для изучения структуры и свойств неорганических, органических и элементоорганических соединений.

Рефрактометрия широко применяется также для определения строения координационных соединений (комплексов молекулярного и хелатного типа), изучения водородной связи, идентификации химических соединений, количественного и структурного анализа, определения физико–химических параметров веществ.

В производственной практике показатель преломления света n используется для контроля степени чистоты и качества веществ; в аналитических целях – для идентификации химических соединений и их количественного определения. Таким образом, рефрактометрия – это метод исследования веществ, основанный на определении показателя преломления (коэффициента рефракции) и некоторых его функций. Из функций n, используемых в химии, наибольшее значение имеют: функция Лоренца – Ленца, производная n по концентрации растворённых веществ (инкремент n) и дисперсионные формулы, включающие разности показателей преломления для двух длин волн. Инкременты n используют в жидкостной хроматографии и при определении молекулярной массы полимеров методом рассеяния света. Для рефрактометрического анализа растворов в широких диапазонах концентраций пользуются таблицами или эмпирическими формулами, важнейшие из которых (для растворов сахарозы, этилового спирта и др.) утверждаются международными соглашениями и лежат в основе построения шкал специализированных рефрактометров для анализа промышленной и сельскохозяйственной продукции. Разработаны способы анализа трехкомпонентных растворов, основанных на одновременном определении n и плотности или вязкости, либо на осуществлении химических превращений с измерением n исходных и конечных растворов; эти способы применяют при контроле нефтепродуктов, фармацевтических препаратов и др. Идентификация органических соединений, минералов, лекарственных веществ осуществляется по таблицам n, приводимым в справочных изданиях. Преимуществами рефрактометрического метода являются его простота и относительно невысокая стоимость приборов для определения коэффициента преломления света.

1. Некоторые понятия физической оптики

1.1 Распространение света

рефракция поляризуемость преломление химический

Первая гипотеза – эмиссионная или корпускулярная, утверждала, что свет представляет собой поток мельчайших частиц – корпускул, испускаемых нагретым светящимся телом. Достигая глаза, эти частицы отражают зрительные ощущения. Ударяясь о преграду, частицы отражаются от её поверхности или проникают внутрь в зависимости от свойств материала тела.

Легко объясняя законы отражения света, эта гипотеза не могла объяснить некоторые особенности преломления света и вовсе не объясняла интерференцию света.

Вторая гипотеза – волновая, утверждала, что частицы, испускаемые светящимся телом, находятся в состоянии чрезвычайно быстрых колебаний, генерирующих волны, которые распространяются во все стороны и, достигая глаза, вызывают зрительные ощущения. Волновая теория хорошо объясняла интерференцию света и другие явления, недоступные корпускулярной гипотезе, но была не в состоянии объяснить, каким образом распространяются волны в вакууме. Впоследствии эта неясность была устранена признанием за световыми волнами электромагнитного характера. Таким образом, свет по этой гипотезе представляет собой быстро меняющееся электромагнитное поле.

В дальнейшем с накоплением экспериментальных данных и их теоретической интерпретации, удалось установить особый, двойственный, характер световых явлений и свести обе, казалось, взаимоисключающие гипотезы в одну стройную, свободную от внутренних противоречий теорию. В соответствии с этой теорией свет равноправно может рассматриваться и как волновое движение электромагнитной природы, и как поток частиц, излучаемых источником света в виде отдельных порций света – квантов или фотонов.

Вместе с тем световые явления могут рассматриваться также и с позиции геометрической или лучевой оптики, представляющей собой применение геометрических построений и теорем.

Фундаментом для сближения геометрии с учением о свете и развития лучевой оптики явились представления о прямолинейности распространения света. Лучевая оптика и в настоящее время сохраняет ведущую роль во всех оптических и светотехнических расчётах, благодаря их простоте и наглядности, и показывает обычно полное соответствие вычисленных и экспериментальных данных.

Лучевая оптика базируется на трёх основных приложениях:

- прямолинейности распространения света в однородной среде;

- поведении света на границе раздела двух сред при условии, что такая граница представляет собой идеально гладкую поверхность;

- независимости распространения света.

Указанные положения установлены эмпирически, т. е. опытным путём посредством сравнения геометрических соотношений без учёта особенностей, связанных со сложной природой света.


Страница: