Реологические свойства САН и АБС пластиков
Кроме того, они демонстрируют более высокую аномалию вязкости, чем линейные аналоги (см. табл.2). Данные табл.2 показывают также, что энергия активации разветвлённых САН значительно выше энергии активации течения линейных САН. Такое поведение типично для разветвлённых полимеров. Также это обусловлено и их высокой молекулярной массой и широким ММР, по сравнению с линейными полимерами.
При проведении экспериментов при высоких напряжениях поверхность экструдатов некоторых образцов становилась мутной, а в ряде случаев наблюдались явные искажения полимера на выходе из экструдера. Поэтому был проведён ряд экспериментов с этими образцами для более близкого ознакомления с этими явлениями. У всех образцов, при их "продавливании" через капилляр прибора, были отмечены общие закономерности поведения. Так, при увеличении напряжения, критические явления течения проявляются в появлении матовости гладкой поверхности экструдата, затем появляется чуть заметная волнистость, степень которой увеличивается пропорционально увеличению напряжения, далее образуется винт, частота и глубина витков которого также зависит от величины прикладываемого напряжения, и наконец завершается это течение выходом образца неупорядоченно и сильно деформированного по всей его поверхности. Всё это прекрасно проиллюстрировано на фотоснимках полученных образцов экструдатов на рисунке 16. А в таблице 3 приведены результаты этих замеров более подробно. Табл. 3
Табл.3
Из данных таблицы 3 видно, что при увеличении температуры, момент проявления критических явлений течения зависит от температуры (при увеличении температуры течения расплава полимера (а именно DBC 745) момент начала неустойчивости происходит немного позже, т.е. при более высоких напряжениях). Также при сравнении разветвлённых образцов видно, что раньше всего деффекты поверхности экструдата появляются у образца DBC 707, далее DBC 745 и DBC 705, и, наконец у DBC 697. Станет понятно почему результаты имеют именно такие значения, если взглянуть на таблицу 1 - пальма первенства по величине молекулярной массы исамому широкому молскулярно-массовому распределению принадлежит именно образцу DBC 707. И далее в том же порядке увеличиваются молекулярные массы и ММР образцов, что и увеличение напряжения, при котором начинает выходить из микровискозиметра экструдат волнистой формы (ММР DBC 697 -существенно шире, чем у DBC705 - поэтому у пего раньше наступает начало неустойчивости). В общем случае можно отметить, что наступление этих явлений у разветвлённых образцов происходит раньше нежели у образцов линейных.
Неудивительно - так как сегменты разветвлённых молекул менее подвижны, поэтому при больших напряжениях они испытывают в капилляре только высокоэластические деформации и на выходе из него не успевают отрелаксировать. Для наглядности можно привести график с кривыми течения для разветвлённого и линейного образца САН с отметками о наступлении различных форм проявления неустойчивости (рис. 15а).
Рис. 15а. Критические явления течения разветвлённых и линейных САН на примере DBC 745 и SAN Ml00.
Были измерены толщины экструдатов различных САН при 220°С и для наглядности построен график - зависимость степени разбухания В=Оэкстр./О1ПШИЛЯр от логарифма напряжения (т) (рис.156).
Рис. 156. Разбухание экстру дата для образцов САН при 220°С.
Как явственно видно из данного графика - более всего разбухают разветвлённые образцы САН (что говорит о том, что они испытывают сильные высокоэластические деформации, нежели линейные образцы). Также можно заметить, что более сильно разбухающий DBC 745 имеет более высокую молекулярную массу и более широкое ММР, чем DBC 697 (табл. 1), и этот факт сам по себе служит объяснением этого феномена.
2.АБС
Табл 2.1
Образцы АБС | GS 3221.2 | GS 3221.4 | GS 3222.2 | GS 3224.1 | GS 3229.2 | Magnum 3904 | GS 3228.2 | GS 3238.4 | GS 32244.4 |
Степень прививки | 0,50 | 0,62 | 0,51 | 0,59 | 0,67 | 0,69 | 0,62 | ||
Мw (САН) | 11000 | 38000 | 172000 | 66000 | 188000 | 199000 | 154000 | 161000 | |
Мn (САН) | 52000 | 42000 | 52000 | 52000 | 53000 | 64000 | 50000 | 67000 | |
Мw/ Мn | 4,06 | 3,29 | 3,31 | 3,19 | 3,55 | 3,11 | 3,08 | 2,40 | |
Содержание каучука | 16,6 | 16,2 | 16,8 | 17,6 | 17,2 | 19,3 | 17,0 | 18,1 | |
Количество > 1нм, % | 2 | 55 | 13 | 20 | 9 | 20 | 17 | 10 | 12 |