Расчёт многокорпусной выпарной установки
Подходящей условной пропускной способностью конденсатоотводчика 45ч12нж является 0,9 т/ч, поэтому установим 4 конденсатоотводчика с такой пропускной способностью.
8.1.3 Расчёт конденсатоотводчиков для третьего корпуса выпарной установки
Давление греющего пара во втором корпусе – 0,094 МПа, значит используем поплавковый муфтовый конденсатоотводчик.
1) Расчётное количество конденсата после выпарного аппарата.
G = 1,2 ∙ Gг = 1,2 ∙ 0,43 = 0,52 кг/с или 1,86 т/ч.
2) Давление пара перед конденсатоотводчиком.
P = 0,95 ∙ Pг = 0,95 ∙ 0,153 = 0,145 МПа или 1,48 атм.
3) Давление пара после конденсатоотводчика.
P’ = 0,01 МПа или 0,1 атм, т.к. у нас свободный слив конденсата.
4) Перепад давления на конденсатоотводчике.
∆P = P – P’ = 0,153 – 0,01 = 0,143 МПа или 1,38 атм.
5)Условная пропускная способность K∙Vy.
=> (43)
ρ = 1323 кг/м3 или 1,323 г/см3.
т/ч
Выбираем конденсатоотводчик типа 45ч12нж с KV = 0,9 т/ч – 4 шт.
Размеры данного конденсатоотводчика: Dy = 25 мм, L = 100 мм, L1 = 12 мм, Hmax = 53 мм, Н1 = 30 мм, S = 40мм, S1 = 21 мм, D0 = 60 мм.
8.2 Расчёт ёмкостей
Необходимо рассчитать две ёмкости: для начального и упаренного раствора.
Вычислим объём ёмкости для исходного (начального) раствора.
(44)
где τ – время, τ = 4 часа; ρ – начальная плотность Na2SO4 при 20 °С, ρ = 1071 кг/м3.
м3
По ГОСТ 9931 – 79 (С. 334 [10]) выбираем ёмкость ГЭЭ, исполнение 2 – горизонтальная с эллиптическим днищем и крышкой. V = 63 м3, Dв = 3000 мм; l = 7920 мм; Fв = 94,1 м2.
Рассчитаем ёмкость для упаренного раствора:
(45)
кг/ч
м3
По ГОСТ 9931 – 79 выбираем ёмкость ГЭЭ, исполнение 2 – горизонтальная с эллиптическим днищем и крышкой. V = 12,5 м3, Dв = 1800 мм; l = 4315 мм; Fв = 31,4 м2.
Ёмкости выбираются из расчёта 4 часа непрерывной работы при отсутствии поступления раствора + 20 % – запас на переполнение ёмкости.
9. Механические расчёты основных узлов и деталей выпарного аппарата
Одним из определяющих параметров при расчётах на прочность узлов и деталей химических аппаратов, работающих под избыточным давлением, является давление среды в аппарате. Расчёт аппарата на прочность производится для рабочего давления при нормальном протекании технологического процесса.
Другим важным параметром при расчёте на прочность узлов и деталей является их температура. При температуре среды в аппарате ниже 250 °С расчётная температура стенки и деталей принимается равной максимально возможной при эксплуатации температуре среды.
Расчёту на прочность предшествует выбор конструкционного материала в зависимости от необходимой химической стойкости, требуемой прочности, дефицитности и стоимости материала и других факторов. Прочностные характеристики конструкционного материала при расчётной температуре определяются допускаемыми напряжениями в узлах и деталях.
Разрушающее действие среды на материал учитывается введением прибавки Ск к номинальной толщине детали:
Ск = П ∙ τа = 10 ∙ 0,1 = 1 мм (46)
где τа – амортизационный срок службы аппарата (можно принять τа = 10 лет); П – коррозионная проницаемость, мм/год. При отсутствии данных о проницаемости принимают П = 0,1 мм/год.
9.1 Расчёт толщины обечаек
Главным составным элементом корпуса выпарного аппарата является обечайка. В химическом аппаратостроении наиболее распространены цилиндрические обечайки, отличающиеся простотой изготовления, рациональным расходом материала и достаточной прочностью. Цилиндрические обечайки из стали, сплавов из основы цветных металлов и других пластичных материалов при избыточном давлении среды в аппарате до 10 МПа изготовляют вальцовкой листов с последующей сваркой стыков.
Необходимо определить толщину стенки сварной цилиндрической обечайки корпуса выпарного аппарата, работающего под внутренним избыточным давлением Р = 0,6 МПа, при следующих данных: материал обечайки – сталь марки Х18Н10Т, проницаемость П ≤ 0,1 мм/год, запас на коррозию Ск = 1 мм; среда – насыщенный водяной пар при абсолютном давлении 0,4 МПа и температуре 143,5 °С. Внутренний диаметр обечайки Dв = 1,8 м, отверстия в обечайке укреплённые, сварной шов стыковой двухсторонний (φш = 0,95). Допускаемое напряжение для стали марки 12Х18Н9Т при 150 °С определим по графику: σд = 236 МН/м2.
Толщина обечайки с учётом запаса на коррозию и округлением рассчитывается по формуле:
(47)
где D – наружный или внутренний диаметр обечайки, м; σд – допускаемое напряжение на растяжение для материала обечайки, МН/м2. Коэффициент φ учитывает ослабление обечайки из-за сварного шва и наличия неукреплённых отверстий. При отсутствии неукреплённых отверстий φ = φш, причём для стальных обечаек принимают φш =0,7 – 1,0, в зависимости от типа сварного шва. Прибавка толщины с учётом коррозии Ск определяется формулой (41), а полученное суммарное значение толщины округляется до ближайшего нормализованного значения добавлением Сокр.
м (48)
Границей применимости формулы (42) является условие:
(49)
То есть условие выполняется.
Допускаемое избыточное давление в обечайке можно определить из формулы (42):
МПа [1].
9.2 Расчёт толщины днищ
Составными элементами корпусов выпарных аппаратов являются днища, которые обычно изготовляются из того же материала, что и обечайки, и привариваются к ней. Днище неразъёмно ограничивает корпус вертикального аппарата снизу и сверху. Форма днища может быть эллиптической, сферической, конической и плоской. Наиболее рациональной формой днищ для цилиндрических аппаратов является эллиптическая. Эллиптические днища изготовляются из листового проката штамповкой и могут использоваться в аппаратах с избыточным давлением до 10 МПа толщину стандартных эллиптических днищ, работающих под внутренним избыточным давлением Р, рассчитывают по формуле (42), которая справедлива при условии:
(50)
Необходимо определить толщину стенки верхнего стандартного отбортованного эллиптического днища для обечайки выпарного аппарата, рассчитанной выше. Днище сварное (φш = 0,95); в нём имеется центрально расположенное неукреплённое отверстие dо = 0,2 м. Коэффициент ослабления днища отверстием определяется по формуле: