Получение фенолов
Аппараты: 1 - насос; 2 - теплообменник; 3 - трубчатый реактор; 4 - дроссельный вентиль; 5 - испаритель; 6 - фильтр для выделения сульфата натрия.
Потоки: I - раствор арилсульфоната натрия; II - раствор едкого натpa; III - раствор продуктов щелочного плавления; IV - водяной пар; V - раствор фенолятов в смеси с кристаллами сульфита натрия; VI - сульфит натрия; VII - pacтвоp фенолятов натрия на нейтрализацию.
Какие возможны пути сокращения опасности перегревов? Один из них — увеличение избытка щелочи. Главный недостаток этого приема увеличение себестоимости целевого продукта. Другой путь — плавление водных растворов сульфоната и щелочи. Смешение водных растворов большой концентрации способ, широко практикуемый. При этом часто первый этап щеточного плавления обращается в выпарку на неприспособленном оборудовании и лишь несколько упрощается приготовление смеси, используемой для плавления. Правда, небольшое количество воды остается в плаве и снижает температуру плавления компонентов, уменьшает вязкость плава. Более эффективной может быть переработка 15-30%-ных водных растворов щелочей и сульфонатов при 360-380оС под давлением. При этом вода не испаряется, реакционная масса обладает высокой подвижностью, система полностью герметизована и исключается внешнее окисление.
Необходимость работы при давлении около 200 кгс/см2 не вызывает особых затруднений, так как используются трубчатые реакторы (рис. 2.3.). Схема становится компактной, полностью непрерывной, легко управляемой. Применение змеевика обеспечивает большую скорость потока и исключает местные перегревы. Выход фенола может быть доведен до 98%.
По-видимому, это наиболее перспективный путь непрерывного оформления процесса. Частным вариантом этой схемы является термическое разложение сульфонатов в смеси с расплавом фенолятов.
2.3. Получение фенолов окислительным декарбоксилированием арилкарбоновых кислот
На следующей стадии производится окисление арилкарбоновой кислоты кислородом воздуха в присутствии водяного пара. Катализатором окисления, как правило, служат соли двухвалентной меди. При этом отщепляется двуокись углерода и образуется соответствующий фенол.
Процесс окислительного декарбоксилирования состоит из двух основных стадий: окисления углеводорода до арилкарбоновой кислоты и собственно окислительного декарбоксилирования последней. С процессом связаны стадии разделения продуктов окислительного декарбоксилирования и возвращения в цикл водных растворов фенолов и переработки образующейся смолы с выделением катализатора для возвращения его в процесс.
2.3.1. Представление о механизме окислительного декарбоксилирования арилкарбоновых кислот
Окислительное декарбоксилирование арилкарбоновых кислот проводится при 200—300°С в присутствии солей двухвалентной меди при подаче в реактор воздуха и водяного пара.
Термическое разложение бензоата меди было описано еще в 1845 г., позднее появился ряд статей, касающихся данного вопроса. Эти работы показали, что при сухой перегонке бензоата образуются фенол, бензол, бензойная кислота, салициловая кислота, фенилбензоат. В пятидесятые годы нашего столетия появилась серия патентов, предлагавших применение этого процесса для получения фениловых эфиров и фенолов из арилкарбоновых кислот и арилсульфокислот. Важным и интересным является то обстоятельство, что гидроксильная группа получаемого фенола становится в орто-положение к удаляемой карбоксильной или сульфогруппе. Так, из о- и n-толуиловых кислот, а также из n-толуолсульфокислоты образуется м-крезол, из м-толуиловой — о- и п-крезолы, из о-хлорбензойной и п-хлорбензойной кислот м-хлорфенол; из мезитиленовой кислоты 2,4-ксиленол, из α- и β-нафтойных кислот β-нафтол.
Процесс превращения ароматических карбоновых кислот в фенолы может быть представлен рядом следующих последовательных стадий.
1. Образование медной соли ароматической карбоновой кислоты:
2.
При нагревании солей двухвалентной меди без доступа пара и воздуха исчезает характерное для этих солей синее или зеленое окрашивание, образуются бесцветные соли одновалентной меди. При проведении процесса в более жестких условиях (высокая температуpa, длительное нагревание, недостаток свободной кислоты) образуется элементарная медь.
Это, как и образование одновалентной меди, связано с резким усилением электроноакцепторных свойств меди при повышении температуры.
3. Регенерация Сu1 и Си0.При барботаже воздуха через расплав кислоты, содержащий одновалентную или элементарную медь, эта последняя окисляется до двухвалентного состояния:
4. Гидролиз н-декарбоксилирование сложных эфиров. Возможны два направления перехода кислых сложных эфиров в фенолы. В отсутствии водяного пара кислые сложные эфиры декарбоксилируются до эфиров, а последние затем гидролизуются с образованием фенола и исходной кислоты.