Получение гидроксида натрия каустификацией содового раствора
Рефераты >> Химия >> Получение гидроксида натрия каустификацией содового раствора

Скорость достижения равновесия зависит от температуры, с ростом которой повышается скорость всего процесса. Кроме того, увеличение температуры способствует образованию крупнокристаллического осадка карбоната кальция, что улучшает отделение шлама от щелочных растворов при дальнейшей декантации.

Выявленные закономерности зависят от качества используемого сырья. В промышленности, где применяются технические сода и известь, в которых содержится значительное количество примесей разного состава, эти закономерности проявляются не однозначно. /2, 12, 14/

Процесс каустификации - пример гетерофазной системы жидкость-твердое (Ж-Т). Межфазные процессы широко распространены в химической технологии. Они возникают при образовании и растворении осадков, испарении и перегонки веществ, переходе веществ из одной фазы в другую, при адсорбции на поверхности твердых тел, экстракции из твердых тел. Скорость межфазных процессов обычно велика в начале контакта фаз и постепенно уменьшается во времени до некоторого постоянного значения, характеризуемого константой химического межфазного равновесия. Скорость гетерогенных процессов сильно зависти от перемешивания. При перемешивании вырабатываются концентрации в большей части объема, но у самой поверхности раздела фаз всегда остается небольшой концентрированный неисчезающий при перемешивании пограничный слой.

Для оценки эффективности возможных путей воздействия на скорость гетерогенной реакции важно знать, какая из стадий является наиболее медленной, определяющей скорость процесса в целом. Так как процесс каустификации лежит в кинетической области, то наиболее медленной стадией является химическое взаимодействие на границе разных фаз. При этом направление и скорость реакции зависит главным образом от соотношения концентраций гидроксид и карбонат ионов в растворе. /18,19/

На практике применяют 10-15 % раствор карбоната натрия, при этом достигается степень каустификации в среднем около 90 % и получают щёлок, содержащий 100 – 120 г/дм3 гидроокиси натрия. Низкая концентрация едкого натра в щёлоках - основной недостаток известкового метода. /1/

Весьма малый тепловой эффект реакции (1), а именно, 0,84 кДж показывает, что температура мало влияет на равновесную степень каустификации. Ниже приведены экспериментальные равновесные степени каустификации, полученные при постоянной концентрации исходного содового раствора и различной температуре:

температура, 0С8090100

степень каустификации, %97,196,896,9

Процесс каустификации ведут при температуре 90 – 100 0С, что обеспечивает достаточно высокую скорость процесса и быстрое осаждение крупнокристаллического карбоната кальция. /2/

В 1882 г. был разработан и внедрён в промышленность ферритный способ получения едкого натра, также основанный на применении кальцинированной соды. Этот способ заключается в получении феррита натрия Na2O · Fе2О3 и последующем его разложении водой или слабыми оборотными щёлочами. Феррит натрия образуется при спекании кальцинированной соды с окисью железа (ІІІ) при высокой температуре. Процесс спекания сопровождается реакцией 2:

Na2CO3 + Fe2O3 = Na2 О · Fe2О3 + CO2(2)

При выщелачивании спека водой образуется едкий натр и окись железа (III) по уравнению реакции 3:

Na2O Fe2O3 + H2O = 2NaOH + Fe2O3 (3)

В настоящее время ферритный способ практически не применяется из-за технологической сложности и больших затрат ручного труда. /1,2/

В конце Х1Х в стали быстро развиваться электрохимические методы получения гидроксидов электролизом водных растворов солей (хлорида натрия). Это наиболее простой и экономичный метод одновременного получения трех важнейших химических продуктов – хлора, водорода, гидроксида натрия с использованием доступного и дешевого сырья для получения рассола. Эти факторы объясняют быстрое развитие электрохимического производства каустической соды как основного промышленного метода его получения. Благодаря чистоте получаемых продуктов, простому и компактному аппаратурному оформлению, а также несложности, одностадийности химико-технологической системы электролиз хлорида натрия – стал основным способом производства гидроксида натрия. /14/ Первый патент на электрохимический метод производства гидроксида натрия и хлора был получен русскими учеными Н. Глуховым и Ф. Ващуком в 1879 году, а уже в 1880 году стало возможным промышленное внедрение этого способа. Электролиз раствора хлорида натрия протекает по суммарной реакции 4:

2NaCL + 2H2O = 2NaOH + CL2 ↑ + H2 ↑ (4)

Сырьем для получения исходного рассола является каменная соль, озерная соль, природные подземные растворы хлорида натрия.

В зависимости от применяемого катода электролиз проводят тремя способами: диафрагменным (с твердым катодом), ртутным (где катод-ртуть) и мембранным (где вместо диафрагмы используется катионно- или анионообменная мембрана). Каждый из указанных способов электролитического получения щелочи и хлора отличается реакциями, протекающими на катодах.

В диафрагменном способе на твердом катоде происходит разряд ионов водорода с образованием в электролите щелочи содержащей остаточное количество хлорида натрия. В анодное пространство подается горячий очищенный рассол и отводится образующий газообразный хлор. В отечественной промышленности применяются высокогерметичные электролизеры различной конструкции: вертикальной листовой асбестовой диафрагмой; с осажденной диафрагмой; с верхним токопроводом. Наибольшее использование нашли электролизеры с вертикальной осажденной диафрагмой и нижним токоподводом. (рис. 2) /12/ В процессе электролиза образуется 99 % хлор, 99,5 % водород и электролитическая щелочь, содержащая 130-135 г/л гидроксида натрия.

В ртутном способе часть поваренной соли разлагается с образованием хлора и амальгамы натрия (раствор натрия в ртути). Натриевая амальгама, перекачивается в другую ванну, где натрий вступает в реакцию 5 с водой:

2Na + 2H2O = 2NaOH + H2 ↑ (5)

Раствор едкого натра идет на выпаривание, а чистая ртуть снова попадает в электролизер. Образующийся водород удаляется в цеховой коллектор, а чистая 50 % каустическая сода выводится как готовый продукт. Для промышленной реализации данного метода в основном используется горизонтальные электролизеры. Недостатком этого метода является использование сильно ядовитой ртути, создающей труднорешаемые проблемы газоочистки и сброса ее отходов.

Хороший технико-экономический эффект дает сочетание обоих способов (ртутного и диафрагменного), когда твердая и обратная соль из диафрагменных электролизеров подается до насыщения аналита из ванн с ртутным катодом, благодаря чему удается использовать дешевые подземные рассолы.

Для проведения мембранного способа электролиза используют электролизеры с ионообменной мембраной (нефильтрующий полимерный материал) которая разделяет анодное и катодное пространство. Насыщенный рассол подается в анодную камеру, ионообменная мембрана предотвращает попадание его в катодное пространство. Хлор выделяется на аноде и выводится из анодной камеры с обедненным рассолом. Ионы натрия проходят через мембрану в катодную камеру, куда подается вода в количестве, необходимом для получения щелочи, заданной концентрации. Для нормальной работы электролизера требуется глубокая очистка сырого рассола с добавлением ионообменных смол. Содержание магния (Mg2+) и кальция (Са2+) в очищенном рассоле должно быть не более 0,005 г/л. Перед подачей в электролизер рассол подкисляют соляной кислотой.


Страница: