Получение аллилового спирта гидролизом хлористого аллила
Рефераты >> Химия >> Получение аллилового спирта гидролизом хлористого аллила

5) по схеме нагрузки — работающие под атмосферным давлением или вакуумом, нагруженные внутренним или внешним давлением;

6) по температуре стенок — не обогреваемые, обогреваемые;

7) по тепловому режиму — изотермические, адиабатические, политропические;

8) по условиям коррозионного воздействия — работающие в условиях интенсивного или умеренного разъедания;

9) по положению в пространстве — вертикальные, горизонтальные, наклонные;

10) по способу сборки — разъемные, неразъемные; по толщине стенки- — тонкостенные, толстостенные (с цельной стенкой, многослойной стенкой);

11) по гидродинамическому режиму — аппараты полного вытеснения, полного смешения, промежуточные;

12) по организации процесса — периодические, непрерывные, полунепрерывные.

Процесс гидролиза хлористого аллила в аллиловый спирт осуществляется при наличии двух жидких фаз. При этом большое значение имеет увеличение поверхности их контакта. Обычно это достигается смешением в насосе, на всасывающую линию которого подают оба реагента. Дальнейшее сохранение системы в эмульгированном состоянии обеспечивается турбулизацией потока за счет достаточно большой его линейной скорости [20].

Оптимальная температура процесса определяется желаемой скоростью и реакционной способностью хлорпроизводного; она равна 150 °С - 160 °С, она выбирается таким образом, чтобы время контакта составляло лишь несколько минут. Это определяет работу под давлением 10 - 15 кгс/см2 (от 1,0 - 1,5 МПа), необходимым для поддержания смеси в жидком состоянии [14, 20].

Реакция синтеза аллилового спирта является изотермической, поэтому ее следует проводить только в непрерывных реакторах, так как для поддержания постоянной температуры в реакторе периодического действия отвод тепла должен изменяться во времени, что в промышленных условиях осуществить трудно. В связи с этим, изотермические реакторы периодического действия на практике не применяются. Таким образом, целесообразно выбирать реактор непрерывного действия [16].

При протекании реакций, порядок которых выше n=0, тип реакторов имеет важное значение, так как для достижения одинаковой степени превращения в реакторе смешения нужно большее время, чем в реакторе вытеснения и, следовательно, интенсивность РИВ выше [18].

Если порядок основной реакции выше порядка побочной реакции, т.е. n1>n2, и, следовательно, n1 - n2=а, то при увеличении концентрации исходного вещества СА селективность возрастает. Следовательно, для достижения высокой селективности необходимо поддерживать концентрацию исходного реагента на максимально высоком уровне, т.е. выгодно применять РИВ или К-РИС, так как в этих реакторах средняя концентрация реагента СА выше, чем в РИС-Н [18, 19].

При проведении эндотермических реакций более эффективным является РИВ, так как средние значения СА, Т в нем выше, чем в РИС-Н [18].

Реакционная масса для синтеза аллилового спирта - гомогенная жидкофазная система. Ввиду последовательно - параллельного типа протекающих реакций для повышения селективности выгоден реактор, близкий к модели идеального вытеснения, при отсутствии циркуляции смеси. Вместе с высокой линейной скоростью потока это предопределяет выбор трубчатого реактора с большой длиной труб малого диаметра (змеевик, трубчатка). Первая его секция служит для подогрева смеси, что для высокотемпературных реакций осуществляют в трубчатой печи топочными газами, а для других — в пароподогревателях типа, например, «труба в трубе» [20].

Исходя из вышеизложенного, выбираем реактор идеального вытеснения непрерывного действия трубчатого типа. Это распространенный тип реактора для проведения реакций в жидкой среде, он представлен на рис. 8. Реакторы такой конструкции широко используют в промышленности органической и неорганической химии.

Реактор для получения аллилового спирта представляет собой вертикальную проточную колонну. Для регулирования температуры в зоне реакции, проходящей с поглощением тепла, средняя часть аппарата выполнена в виде трубчатки 2. В межтрубное пространство подаются топочные газы. Режимная температура поддерживается при помощи регуляторов, установленных на линиях обратных газов, выходящих из реактора. Через штуцер 1 реакционная смесь поступает в реактор [61].

Осмотр и чистку аппарата осуществляют через люки 6. С целью защиты от коррозии внутренняя поверхность отстойных секций покрыта медью; трубы и трубные решетки выполнены из меди [62].

Реактор описанного типа менее громоздок, чем аппараты с мешалками, требующие к тому же большого расхода электроэнергии. Такого рода противоточные реакторы, производительность которых (примерно в 2,5 раза) выше, чем производительность прямоточных аппаратов, отличаются минимальным перемешиванием вдоль оси движения материальных потоков и их применение целесообразно для быстро протекающих химических реакций.

Рис.8. Трубчатый реактор с трубчаткой.

1 –штуцер для входа реагентов; 2 – штуцер для входа топочных газов; 3 – трубчатка; 4 – люк; 5 – штуцер для выхода продукта; 6 – штуцер для выхода топочных газов.

Реактор идеального вытеснения (РИВ) представляет собой трубчатый аппарат, в котором отношение длины трубы L к ее диаметру d достаточно велико. В реактор непрерывно подаются исходные реагенты, которые превращаются в продукты реакции по мере перемещения их по длине реактора.

Гидродинамический режим в РИВ характеризуется тем, что любая частица потока движется только в одном направлении по длине реактора, обратное (продольное) перемешивание отсутствует; отсутствует также перемешивание по сечению реактора. Предполагается, что распределение вещества по этому сечению равномерное, т. е. значения параметров реакционной смеси одинаковые.

Каждый элемент объема реакционной массы dVr движется по длине реактора, не смешиваясь с предыдущими и последующими элементами объема, и ведет себя как поршень в цилиндре, вытесняя все, что находится перед ним. Поэтому такой режим движения реагентов называется иногда поршневым или режимом полного вытеснения.

Состав каждого элемента объема последовательно изменяется по длине реактора вследствие протекания химической реакции. Так, например, концентрация исходного реагента А постепенно меняется по длине реактора от начального CA,0 до конечного значения Са Следствием такого режима движения реакционной смеси является то, что время пребывания каждой частицы в реакторе одно и то же [16].

Для составления математического описания РИВ [16, 19] исходят из дифференциального уравнения материального баланса (1), преобразуя его на основе указанных выше особенностей этого реактора:

. (1)

Поскольку в РИВ реакционная смесь движется только в одном направлении (по длине l), то для первой группы членов правой части уравнения (1) можно записать (выбрав за направление оси х направление движения потока реагентов в реакторе):

,


Страница: