Получение аллилового спирта гидролизом хлористого аллила
Побочная реакция: A1 B1 C1 D1
2 СН3=СН-СН2Сl + H2O (СН2=СН-СН2)O + 2HCl
,
,
,
.
4. Определяем количество тепла, которое необходимо для нагревания до температуры химической реакции: ,
5.Определяем количество потерь тепла:
6. Определим тепловую нагрузку на реактор:
QF < 0 – для поддержания заданной температуры нужен теплоноситель;
Определим поверхность теплообмена реактора:
.
Данные, полученные в результате расчета теплового баланса сводим в табл. 7.
Таблица 7
Тепловой баланс
Приход |
Расход | ||||
Тепловой поток |
кДж/мин |
% тепл |
Тепловой поток |
кДж/мин |
% тепл |
Qi |
98310,12 |
54,57 |
Qj |
171208,92 |
95,03 |
QF |
81859,63 |
45,43 |
Qнагр |
943,89 |
0,52 |
Qпот |
1966,20 |
1,09 | |||
Qr |
6050,74 |
3,36 | |||
Итого |
180169,75 |
100,00 |
Итого |
180169,75 |
100,00 |
Вывод: реакция эндотермическая, QF > 0, то есть для поддержания заданной температуры химической реакции необходимо подводить тепло в количестве 180169,75 кДж/мин.
5.3 Расчет объема реактора
Гидродинамический режим в РИВ характеризуется тем, что любая частица потока движется только в одном направлении по длине реактора; обратное (продольное) перемешивание и перемешивание по сечению аппарата отсутствуют.
В РИВ состав реакционной массы изменяется по длине реактора, поэтому материальный баланс по одному из компонентов необходимо составлять для элементарного объема аппарата dV [64].
Материальный баланс по одному из компонентов в общем виде выражают соотношением [18]:
∑Gприх = ∑Gрасх + ∑Gпотерь.
Gi = Gi + dGi + vrdV.
Учитывая, что dGi = d[Gi,0(1-xi)] = -Gi,0dxi, находим выражение по одному из компонентов для элементарного объема реактора dV:
Gi,0dxi = vrdV = GvCi,0dxi,
где Gv – объемный расход реакционной массы;
Gi,0 – массовый расход реакционной массы;
Ci,0 – концентрация реагента на входе в реактор.
Чтобы получить проектное уравнение для РИВ, необходимо в последнем уравнении разделить переменные и проинтегрировать его, учитывая, что скорость реакции зависит от концентрации веществ или степени превращения. После несложных операций получаем:
откуда время контакта реагентов в РИВ [61]:
Так как нам известно время реакции, выражаем объем:
.
Таким образом, объем реактор составит:
V = 3,5 мин ∙ 11,287 л/мин = 39,505 л = 0,034 м3.
6. Операторная модель химико-технологической системы
Операторная схема жидкофазного гидролиза хлористого аллила в аллиловый спирт представлена на рисунке 9.
Хлорпроизводное и водный раствор гидролизирующего агента подают на всасывающую линию компрессора 2, который эмульгирует смесь и сжимает её до давления 15 атм. Причем переключающее устройство гидравлического клапана пускает в действие поршневую ступень компрессора. При этом, в системе давление повышается до желаемого уровня.
В подогревателе 3 реакционная масса нагревается до температуры 1400С, и в изолированном от теплопотерь реакторе 4 процесс ведут до высокой степени конверсии хлорпроизводного (95% и более). После этого жидкость дросселируют в клапане редуктора 5 почти до атмосферного давления, причем часть ее в испарителе - сепараторе 6 испаряется и пары отделяются от жидкости. Органические продукты отгоняют с острым водяным паром; из нижней части испарителя 6 отводят раствор хлористого натрия и избыток щелочи.
В ректификационной колонне 7 аллиловый спирт отделяют, азеотропной перегонкой от диаллилового эфира. Из верхней части колонны при 77,8°С отбирают тройную азеотропную смесь аллилового спирта, диаллилового эфира и воды. Смесь поступает в сепаратор 8, где разделяется на два слоя: нижний (89,5% воды, 10% аллилового спирта и 0,5% диаллилового эфира), и верхний (90% диаллилового эфира; 8,6% аллилового спирта и 1,4% воды). Из сепаратора 8 верхний слой перетекает в аппарат 9, куда также подают воду для извлечения аллилового спирта в сепараторе 10. Из нижней части колонны 7 жидкость направляют в ректификационную колонну 11 для выделения аллилового спирта.
В процессе синтеза, с ректификационных колонн 7, 11, 13 аллиловый спирт поступает в сборник 14.
Рис. 9. Операторная схема получения аллилового спирта из хлористого аллила:
1 - смеситель; 2 - компрессор; 3 - подогреватель; 4 – реактор; 5 – редуктор; 6 – испаритель - сепаратор; 7, 11, 13 - ректификационная колонна; 8, 10 – сепаратор; 9, 12 – смеситель; 14- сборник
Щелочь из испарителя - сепаратора 6 вновь возвращается на стадию синтеза.