Полный расчет ректификационной колонны
Перечень инженерных расчетов: расчет ректификационной колонны; подробный тепловой расчет дефлегматора; ориентировочный расчет теплообменников.
Перечень работ выполняемых на ЭВМ: расчет дефлегматора.
Состав и объем графической части: технологическая схема; общий вид дефлегматора.
Основные данные: расход исходной смеси 6.5 кг/с; концентрации (мольные доли) , ; продукты разделения охладить до 25ْС.
Введение
Для получения продуктов сложного состава, разделения изотопов, выделения индивидуальных веществ широкое применение в промышленности получила ректификация. Этот процесс основан на различной летучести составляющих смесь компонентов, т.е. на различных температурах кипения компонентов при одинаковом давлении. Ректификация заключается в многократном частичном испарении жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводится обычно в колонных аппаратах, состоящих из собственно колонны, где осуществляется противоточное контактирование пара и жидкости, и устройств, в которых происходит испарение жидкости и конденсация пара — куба и дефлегматора.
По конструкции ректификационные колонны подразделяются на насадочные, тарельчатые и роторные. Основным типом колонных аппаратов большой производительности считаются ректификационные колонны с барботажными тарелками, а при необходимости самого малого перепада давления на одну теоретическую ступень разделения или при работе в коррозионной среде – колонны с насадкой.
По способу проведения ректификацию разделяют на периодическую и непрерывную.
При непрерывной - разделяемая смесь непрерывно подается в среднюю часть колонны, дистиллят отбирается из дефлегматора, а обедненный легколетучим компонентом остаток отводится из куба колонны, флегма поступает на орошение в верхнюю часть колонны.
При периодической ректификации в нижнюю часть (куб) колонны, снабженной нагревательным устройством, загружают исходную смесь; образующийся пар поднимается верх и конденсируется в дефлегматоре (холодильнике), часть конденсата (флегмы) возвращается на орошение в верхнюю часть колонны, а оставшаяся жидкость отбирается.
Насадочные колонны получили широкое распространение в химической промышленности благодаря простоте их устройства, дешевизне изготовления и малому гидравлическому сопротивлению при пленочном режиме работы. В насадочных массообменных аппаратах жидкость тонкой пленкой покрывает насадку и стекает по ней, при этом поверхность контакта с газообразной фазой определяется поверхностью насадки, свойствами жидкости и гидродинамическим режимом.
Недостатком работы насадочной колонны является неравномерность распределения пара и жидкости по поперечному сечению, что приводит к - неодинаковой эффективности различных ее частей и низкой эффективности работы всей колонны в целом. Значительное увеличение эффективности аппарата достигается применением насадки, частично погруженной в жидкость: газ при этом в виде пузырьков барботируется через слой жидкости.
В отдельных случаях применяют подвижные насадки, которые приводят в колебательное движение восходящим потоком газа, при этом допускаются высокие скорости движения фаз, а поверхность межфазного контакта превышает поверхность насадочных элементов. Эффективность тепло- и массообмена в значительной мере зависит от равномерности распределения жидкости в объеме насадки. Эта задача решается применением специальных оросителей, распределяющих жидкость по верхнему сечению насадки, и использованием материалов (металлических сеток, армированной стеклоткани), обеспечивающих растекание жидкости по поверхности насадки под действием капиллярных сил.
Насадки загружают в аппараты навалом на опорные решетки (нерегулярные насадки), укладывают в определенном порядке или монтируют в жесткую структуру (регулярные насадки). Изготавливают насадки из дерева, металла, стекла, керамики, пластмасс. Элементы нерегулярных насадок выполняют в виде колец, спиралей, роликов, шаров, седел и т.д. Наиболее распространены кольца Рашига, размеры которых обычно составляют 50 мм. Для повышения смачиваемости насадки и пропускной способности аппарата стенки колец иногда снабжают продольными или поперечными канавками или прорезями.
Для отвода жидкости из насадочной колонны применяют две схемы: в первой схеме (обычные насадочные колонны) жидкость стекает по насадке и отводится из нижней части колонны; во второй схеме (эмульгационные колонны) жидкость отводится через переливную трубу.
В данном курсовом проекте производится расчет обычной ректификационной насадочной колонны для разделения бинарной смеси – «ацетон – четыреххлористый углерод» при атмосферном давлении, с насыпной насадкой из стальных колец Рашига.
1. Описание технологической схемы
Исходная смесь подаётся в теплообменник центробежным насосом из ёмкости, где она подогревается до температуры кипения. Затем нагретая смесь поступает на разделение в середину ректификационной колонны на тарелку питания, где состав жидкости равен составу исходной смеси.
Стекая вниз по колонне, жидкость взаимодействует с поднимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике. Начальный состав пара примерно равен составу кубового остатка, т.е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обогащается легколетучим компонентом. Для более полного обогащения верхнюю часть колонны орошают, в соответствии с заданным флегмовым числом, жидкостью (флегмой), получаемой в дефлегматоре путём конденсации пара, выходящего из колонны. Часть конденсата выводится из дефлегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике и направляется в промежуточную ёмкость.
Из кубовой части колонны насосом непрерывно выводится кубовая жидкость - продукт, обогащённый труднолетучим компонентом, который охлаждается в теплообменнике и направляется в ёмкость.
Таким образом, в ректификационной колонне осуществляется непрерывный процесс разделения исходной бинарной смеси на дистиллят (с высоким содержанием легколетучего компонента) и кубовый остаток (обогащённый труднолетучим компонентом).
2. Инженерные расчеты
2.1 Технологические расчеты
Для технологических расчетов установки необходимо знать свойства веществ при определённых температурах. Основными диаграммами для определения этих свойств являются диаграммы: состав пара – состав жидкости, и зависимость температуры кипения от состава. В приложение 1 приведены диаграммы указанных свойств бинарной системы ацетон- четыреххлористый углерод.
2.1.1 Равновесные данные
x - мольная доля легколетучего компонента в жидкой фазе;
y - мольная доля легколетучего компонента в паровой фазе;
t – температура,ْС.
x |
y |
t |
0 |
0 |
76.74 |
5.9 |
20.25 |
70.80 |
8.7 |
27.10 |
68.74 |
17.9 |
40.75 |
64.45 |
26.4 |
48.95 |
61.91 |
37.4 |
56.55 |
59.83 |
45.1 |
61.25 |
58.74 |
52.55 |
65.50 |
57.94 |
61.65 |
70.65 |
57.18 |
69.60 |
75.60 |
56.67 |
76.20 |
79.85 |
56.36 |
82.95 |
84.60 |
56.15 |
89.50 |
89.80 |
56.01 |
91.40 |
91.50 |
56.02 |
95.30 |
95.20 |
55.99 |
100.00 |
100.00 |
56.08 |