Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ
Рефераты >> Химия >> Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ

Необратимое взаимодействие ПМГ по механизму внутрисферного обмена лигандов обусловлено образованием прочной связи металла с сорбентом, которая может усилиться при нагревании или высыхании насыщенного сорбента. Если комплексообразование в процессе сорбции завершится на стадии образования ониевых хлорокомплексов, то возможно элюирование с помощью кислот. Наиболее эффективнее использование раствора тиомочевины в соляной кислоте[36].

На основе литературных данных были сделаны сводные таблицы применяемых сорбционных материалов. В таблице 2 представлены основные свойства и функциональные группы волокнистых сорбентов и их кинетические характеристики, а в таблице 3 механизмы взаимодействия ионов металлов с волокнистыми сорбентами.

Таблица 2. ССЕ и тип кинетики волокнистых сорбентов

Название сорбента

Функциональные группы

ССЕ или степень извлечения

Тип кинетики

Литература

МСПВС

Из хлоридных комплексов в 2м HCI при 20°C

Pd(2)-0,77 ммоль/г

При 98°C

Pd(2)-1,80 ммоль/г

Смешанно-диффузионный (“гелевая” и “пленочная” диффузия)

30,31

Мтилон-Т

Из хлоридных комплексов в 1м HCI при 100°C

Pd(2)-83,0 мг/г

Смешанно-диффузионный

28,29

Полимер стирольного типа с меркапто- группами.

Из хлоридных комплексов в 1м HCI при 20°C

Pd(2)-0,62 ммоль/г  

 

31

Тиопан-2

Основа ПАН

Модифиц. реагент

Из хлоридных комплексов в 1м HCI

При 20°C

Pd(2)-0,83 ммоль/г

При 98°C

Pd(2)-1,43 ммоль/г

Смешанно-диффузионный

33

Тиопан-5

Основа ПАН

Модифиц. реагент

Из хлоридных комплексов в 1м HCI

При 20°C

Pd(2)-0,53 ммоль/г

При 98°C

Pd(2)-0,82 ммоль/г

Смешанно-диффузионный

33

Тиопан-6

Основа ПАН

Модифиц. реагент

Из хлоридных комплексов в 1м HCI при 20°C

Pd(2)-0,41 ммоль/г

При 98°C

Pd(2)-0,57 ммоль/г

Смешанно-диффузионный

33

Таблица 3. Механизм взаимодействия волокнистых сорбентов

Волокно

Предполагаемый механизм сорбции

Литература

ПАН-МВП

2RPy∙HCl+[PdCl4]2-↔(RPyH)2[PdCl4]+2Cl-

34

Полимер стирольно-го типа с меркапто- группами

2R-CH2-SH+2K2[PdCl4]→[Pd(R-CH2-SH)Cl2]2+4KCl

31

МСПВС

1.При рН≥7

[PdCl4]-2+H2O↔[Pd(H2O)nCl4-n]-2-n+nCl-, где n≤2

[Pd(H2O)2Cl2]+R-С(NH2)S→[Pd{R-С(NH2)S}H2OCl]

2.При рН<7

[PdCl4]-2+ R-С(NH2)S→[Pd{R-С(NH2)S}Cl3]-+Cl-

30,31

Мтилон-Т

28,29

Тиопан-2

[PdCl4]-2+R-S-CS-N(C2H5)2 →[Pd{D-S-CS-N(C2H5)2}Cl3]-+Cl-

33

1.4.3 Формы нахождения палладия в растворе

Возможность выделения палладия с помощью ионного обмена напрямую связана с формами нахождения его в растворах различного состава.

Высокая склонность палладия, как и всех платиновых металлов, к комплексообразованию, приводит к тому, что палладий легко извлекается из технических растворов в виде комплексов. Рассмотрим некоторые из них.

Хлоридные комплексы палладия являются наиболее широко распространенными. Гексахлорпалладаты () устойчивы лишь в присутствии окислителей, при нагревании разлагаются до тетрахлорпалладатов по схеме:

В водных растворах хлорида палладия (2) при рН<1,0 и концентрации металла 10-6—10-2 моль/л в зависимости от концентрации хлорид-иона образуются плоскостные комплексы , состав которых и значения констант устойчивости установлены различными физико-химическими методами [37].

Кривые распределения отмечают отсутствие доминирования, каких либо комплексов, но при концентрации хлорид-иона больше 1моль/л, доминирует форма . В области концентраций хлорид-иона 0.1-0.5 моль/л сосуществуют комплексы и .

Таким образом, в литературе есть сообщения об изучении сорбции платиновых металлов на азот и серосодержащих волокнистых сорбентах. Однако публикаций об исследовании сорбции платиновых металлов на сорбентах, в составе которых тиоамидные и пиридиновые группы, сравнительно невелико. Поэтому исследование сорбции палладия на данных сорбентах является актуальным и этому вопросу нами уделено особое внимание.


Страница: