Определение состава стиральных порошков
Рефераты >> Химия >> Определение состава стиральных порошков

Мозли считал, что его метод исследования имеет большое будущее, поскольку "он способен привести к открытию еще неизвестных элементов, так как положение соответствующих им характеристических линий рентгеновского излучения можно предсказать заранее". Мозли для практического подтверждения своих идей проводил поиск предсказанных, но не открытых элементов. Он пытался обнаружить с помощью рентгеновских спектров природных объектов элемент номер 72, чья клетка пустовала тогда в таблице элементов слева от тантала (уже открытого к тому времени). Но только спустя 8 лет спектроскопист А.Довийе в 1922 г., используя более совершенную аппаратуру для рентгеноспектрального анализа, обнаружил новый элемент 72 (гафний) в тех же образцах, которые ранее исследовал Мозли. Другим элементом, обнаруженным в природе с помощью рентгеноспектрального анализа, стал рений (открыт супругами Ноддак в 1925 г.). Гафний и Рений оказались последними по времени открытия стабильными химическими элементами на Земле. Характеристический рентгеновский спектр стал "визитной карточкой" элемента.

Работа по развитию техники рентгеноспектрального анализа была продолжена шведским физиком-экспериментатором Карлом Манне Георгом Сигбаном. Он разработал новые методы получения детальных рентгеновских спектров и исследовал рентгеновские спектры почти всех химических элементов. Это позволило получить исчерпывающие данные о структуре электронных оболочек атомов. Сигбан изготовил дифракционную решетку для исследования длинноволнового рентгеновского излечения. Тем самым он ликвидировал пробел между жестким (коротковолновым) рентгеновским излучением, которое исследуется с помощью кристаллических решеток, и оптическим ультрафиолетовым излучением, исследуемым с помощью обычной оптической дифракционной решетки. Исследования шведского ученого показали как дополняются электронные оболочки атома при переходе от более легких элементов к тяжелым. Его наблюдения позволили определить, сколько электронов находится в соответствующей оболочке того или иного элемента.

Случилось так, что 57 лет спустя Нобелевская премия была вручена Каю Сигбану - сыну Карла Сигбана. Увлекаясь с раннего возраста физикой, Сигбан также занялся исследованием рентгеновского излечения, в частности изучением электронов, выбиваемых рентгеновскими лучами из вещества. В 1951 г, будучи профессором, молодой шведский ученый положил начало новому методу - электронной спектроскопии и использовал его для химического анализа. Основная заслуга этого исследователя состоит в том, что он сконструировал прибор для исследования энергетических спектров электронов, выбиваемых из атомов рентгеновскими лучами. Разработанный им рентгеновский электронный спектрометр оказался исключительно ценным прибором для современной химии. Максимумы электронных спектров соответствуют энергиям связи электронов на внутренних оболочках атомов, что дает возможность исследовать структуру молекул. Метод отличается высокой чувствительностью, что позволяет ограничиваться для анализа поверхностным слоем вещества толщиной не более 50-100 ангстрем. Это дает возможность исследовать процессы коррозии, адсорбции и другие поверхностные химические явления. Приборы для электронной спектроскопии являются непременной составной частью оснащения современной исследовательской лаборатории.

2.2 Принцип действия

Здесь мы хотим описать в чем заключается смысл рентгеновской флуоресценции и чем данный метод отличается от других видов анализа. П Когда атомы образца облучаются фотонами с высокой энергией - возбуждающим первичным излучением рентгеновской трубки, это вызывает испускание электронов. Электроны покидают атом. Как следствие, в одной или более электронных орбиталях образуются "дырки" - вакансии, благодаря чему атомы переходят в возбужденное состояние, т.е. становятся нестабильны. Через миллионные доли секунды атомы возвращаются к стабильному состоянию когда вакансии во внутренних орбиталях заполняются электронами из внешних орбиталей. Такой переход сопровождается испусканием энергии в виде вторичного фотона - этот феномен и называется "флуоресценция''. Энергия вторичного фотона находится в диапазоне энергий рентгеновского излучения, которое располагается в спектре электромагнитных колебаний между ультрафиолетом и гамма-излучением.

Различные электронные орбитали обозначаются K,L,M и.т.д., где К - орбиталь, ближайшая к ядру. Каждой орбитали электрона в атоме каждого элемента соответствует собственный энергетический уровень. Энергия испускаемого вторичного фотона определяется разницей между энергией начальной и конечной орбиталей, между которыми произошел переход электрона.

Рис. 1

Длина волны испускаемого фотона связана с энергией формулой E = E1-E2 = hc/l , где E1 и E2 - энергии орбиталей, между которыми произошел переход электрона, h - постоянная Планка, с - скорость света, l - длина волны испускаемого(вторичного) фотона. Таким образом длина волны флуоресценции является индивидуальной характеристикой каждого элемента и называется характеристической флуоресценцией. В то же время интенсивность (число фотонов, поступающих за единицу времени) пропорциональна концентрации (количеству атомов) соответствующего элемента. Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца. П Источником возбуждающего (первичного) излучения высокой энергии является рентгеновская трубка, питаемая высокостабильным генератором высокого напряжения. Механизм возникновения первичного излучения похож на механизм флуоресценции, за исключением того, что возбуждение материала анода трубки происходит при его бомбардировке электронами высоких энергий, а не рентгеновским излучением, как при флуоресценции. Спектральный состав излучения трубки зависит от выбора материала анода. Для большинства областей применения оптимальным является родиевый анод, хотя другие материалы, например молибден, хром или золото, могут быть предпочтительнее в определенных случаях.

При проведении анализа все элементы, присутствующие в образце, одновременно излучают фотоны характеристической флуоресценции. Для изучения концентрации какого-либо элемента в образце необходимо из общего потока излучения, поступающего от пробы, выделить излучение такой длины волны, которая является характеристической для исследуемого элемента. Это достигается разложением суммарного потока излучения, поступающего от пробы, по длинам волн и получением спектра. Спектром называется кривая, описывающая зависимость интенсивности излучения от длины волны. Для разложения излучения в спектр (выделения различных длин волн) используются кристалл-анализаторы с кристаллическим плоскостями, параллельными поверхности и имеющими межплоскостное расстояние d.

Рис.2

Если излучение с длиной волны l падает на кристалл под углом q , дифракция возникнет только если расстояния, проходимые фотонами при отражении от соседних кристаллических плоскостей, отличаются на целое число (n) длин волн. С изменением угла q при вращении кристалла по отношению к потоку излучения, дифракция будет возникать последовательно для различных длин волн в соответствии с законом Брэгга: nl = 2d sinq. Угловое положение (q) кристалла-анализатора задается компьютером в зависимости от длины волны, которую нужно выделить из спектра для анализа требуемого элемента. Выделенное излучение поступает в детектор рентгеновского излучения для измерения интенсивности. Интенсивностью называется число фотонов, поступающее за единицу времени. П Так как разделение пиков рентгеновской флуоресценции зависит от соотношения длины волны и межплоскостного расстояния (d), для увеличения селективности и чувствительности аппаратуры, измерение спектра исследуемой пробы в широком диапазоне энергий производят с помощью нескольких кристалл-анализаторов из различных материалов. П Монокристаллы, такие как германий, фторид лития, антимонид индия являются идеальными анализаторами для излучения многих элементов. В последнее время, многослойные синтетические покрытия используются для увеличения чувствительности при анализе легких элементов. Детектирование флуоресцентного излучения основано на преобразовании энергии флуоресценции в импульсы напряжения определенной амплитуды. П пп ло Существуют разные типы детекторов. Для относительно больших длин волн при анализе легких элементов используются наполненные газом пропорциональные детекторы. Их действие основано на ионизации газа излучением и измерении числа электрических импульсов, прошедших через ионизированный газ. Для коротких длин волн (тяжелые элементы) применяются сцинтилляционные детекторы, в которых измеряется ток фотоэлемента, чувствительного к светимости специального вещества - сцинтиллятора (NaI/Tl) при попадания на него рентгеновского излучения. П Чем больше атомов определенного типа в образце, тем больше импульсов регистрирутся детектором.


Страница: