Норборненна-2,5-диен и его свойства
Рефераты >> Химия >> Норборненна-2,5-диен и его свойства

Многие продукты аллилирования НБД аллилформиатом и аллилацетатом имеют одинаковое строение. Это моноаддукты I – III, характеризующиеся молекулярной массой 132, и пространственные изомеры продуктов двойного аллилирования НБД IV – VI с массами 172 (таблица 3).

Новые соединения при использованиии АФ имеют массы 134, 174 и 176. Очевидно они образуются при гидрировании I, II, V, VI. Гидрированию преимущественно подвергаются соединения, имеющие активную внутрициклическую двойную связь (I и II), или вещества, содержащие винильные группы (I, V, VI). Продукты гидрирования метиленовых групп в указанных условиях не наблюдаются.

Помимо указанных соединений обнаружены продукты присоединения АФ к НБД (XIII и XIV), а также в незначительных количествах (2 – 5%) норборнен. В газовой фазе обнаружено до 3% углекислого газа СО2.

Таблица 3

Строение продуктов аллилирования НБД аллилформиатом.

Классификация продуктов реакции  

Строение продуктов

Молекулярная масса

 

одинарное аллилирование НБД

132

 

двойное аллилирование НБД

172

 

аллилирование с одновременным гидрированием НБД

134

двойное аллилирование с одновременным гидрированием НБД

174, 176

гидроформилирование НБД

138

Все соединения, образующиеся в ходе реакции, можно формально классифицировать как аддукты НБД с С3Н4, С3Н6, Н2 и НСООН. Очевидно, источником этих гипотетических частиц или молекул являются аллильные фрагменты, изначально входящие в состав аллилформиата. Аллил (С3Н5) образует фрагмент С3Н4, а акцептором атома водорода формально служат или другой аллил, или формильный остаток. Возможна также рекомбинация двух атомов водорода (рисунок 3.1):

Рассматривая эту реакцию как окислительно-восстановительное диспропорционирование, связанное с гидридным переносом, представляется возможным провести оценку материального баланса продуктов "окисления" и "восстановления". К продуктам окисления с этой точки зрения следует отнести соединения I – VI и СО2, восстановительными продуктами являются, продукты гидрирования и гидрокарбоксилирования. Молекулярный водород и муравьиная кислота – потенциальные продукты восстановления – в реакционной системе не образуются. При сведении материального баланса следует учитывать, что соединения IV – VI – являются дважды окисленными (С7Н8+2С3Н4), а соединение XII – дважды восстановленным.

Рисунок 3.1. Механизма каталитического аллилирования НБД аллилформиатом.

Предварительные результаты свидетельствуют, что окислительно-восстановительный баланс удовлетворительно соблюдается не только между конечными продуктами, но и в ходе каждого эксперимента при различных конверсиях реагентов.

Дополнив предложенный ранее механизм каталитического аллилирования НБД аллилацетатом можно объяснить образование всех наблюдаемых продуктов (рис.2).

В соответствии с ним формирование соединений I – VI в присутствии АФ происходит аналогично другим аллиловым эфирам.

Ключевая роль в образовании продуктов гидрирования и гидроформилирования НБД и соединений I, II, IV – VI по-видимому играет гидридный комплекс, образующийся на стадии β – гидридного переноса.

Для всех R, являющихся алкильными или арильными радикалами, распад этого интермедиата в результате восстановительного элиминирования приводит к образованию кислоты RCOOH. В случае R = H ситуация принципиальна иная. Известно, например, что в присутствии комплексов Pd, муравьиная кислота является является гидрирующим агентом и распадается с образованием CO2.

Тогда можно предположить, что формирующийся комплекс может участвовать в следующих превращениях:

Рисунок 3.2. Заключительная часть механизма каталитического аллилирования НБД аллилформиатом.

Все направления реализуются одновременно, их соотношение зависят от концентрации всех реагентов, что, в свою очередь, определяется степенью конверсии НБД.

Восстановление двойных связей, вероятно связано с образованием в реакционной смеси муравьиной кислоты, являющейся гидрирующим агентом, т. к. при ее разложение, по одному из возможных путей, в присутствии катализатора, образуется углекислый газ и водород. При анализе газовой фазы в реакторе действительно был обнаружен углекислый газ, что подтверждает наши предположения.

Следует отметить, при анализе реакционной смеси молекулярный водород и муравьиная кислота – потенциальные продукты восстановления – не обнаружены. Возможно, вся образующаяся кислота расходуется на образование продуктов гидрирования.

Заметим, если аллилирующим агентом является аллилацетат, в ходе реакции образуется устойчивая уксусная кислота. Она оказывает дезактивирующее действие на катализатор, накапливаясь в реакторе. Таким образом, при использовании аллилформиата, как аллилирующего агента, образуется более устойчивая каталитическая система. Следует также отметить, что по качественным наблюдениям реакция с аллилформиатом протекает значительно быстрее, чем с аллилацетатом. Этот факт требует дополнительного исследования.

Необходимо также отметить, что в ходе реакции образуется углекислый газ. Причем СО2, образующийся в качестве побочного продукта реакции, абсолютно индеферентен и не оказывает дезактивирующего влияния на каталитическую систему.

3.2. Каталитическое аллилирование НБД аллиловым спиртом.

Как показано в пункте 1.3, протекание реакции каталитического аллилирования НБД при использовании аллилового спирта, в обычных условиях проведения данного процесса, невозможно.

Анализируя механизм реакции (рис.3.1), нами было установлено, что для протекания реакции необходимо, чтобы аллильные производные (All-X) окислительно присоединялись к палладию, с образованием аллильного фрагмента (рис.3.2).


Страница: