Линейный гармонический осциллятор
Рефераты >> Химия >> Линейный гармонический осциллятор

(3.105)

Оператор представляет собой бином, составленный из степеней переменной s и оператора дифференцирования , который в свою очередь извлекает из гауссовой экспоненты степенные множители, в результате выражение (3.105) преобразуется к виду:

, (3.106)

где – многочлен степени υ, называемый полиномом Эрмита. Нетрудно убедиться, что эти полиномы можно представить выражением, которое легко запоминается, благодаря своей симметричности:

. (3.107)

Последовательно придавая υ значения 0, 1, 2, 3 …, читатель легко может вывести формулы полиномов Эрмита разных порядков. Для того, чтобы читатель смог проверить свои расчеты, приведем в табл.2 несколько первых полиномов Эрмита вместе с их корнями и графиками. В табл.2 также изображены графики ненормированных волновых функций

=.

У волновых функций имеется один и тот же множитель – экспонента ; эта быстро спадающая к нулю функция при удалении от начала координат “прижимает” к оси абсцисс расходящиеся было ветви полиномов. В результате получается картина, очень напоминающая поведение волновых функции “ящика”.

Табл.2.

Полиномы Эрмита и волновые функции гармонияеского

осциллятора

υ

Корни полиномов

Графики полиномов

Графики волновых функций .

0

1

-

   

1

2s

0

   

2

4s2 - 2

±1/√2

   

3

8s3 - 12 s

0; ±3/2

   

4

16s4-48s2+12

±0,525; ±1,651

   

Читатель может сам получить формулу для нормировочных коэффициентов или взять их готовое выражение:

. (3.108)

3.5.14. Прямыми вычислениями нетрудно еще раз проверить свойство ортогональности волновых функций. Интегрирование по всей области возможных значений переменной х дает:

, (3.109)

что наглядно видно из графиков табл. 2

Напомним, что свойство ортогональности – это общее свойство собствен-ных функций любого эрмитова оператора, к числу которых относится и гамильтониан.

3.5.15. Все полиномы Эрмита и порождаемые ими волновые функции делятся на два класса – четные и нечетные. Ранее подобное свойство наблюдалось у волновых функций “ящика” и “ротатора”. Анализ четности волновых функций и их произведений оказывается очень полезным при оценке различных характеристик системы. Рассмотрим это на примерах.

Покажем, что среднее отклонение колеблющейся системы от положения равновесия равно нулю. Следуя 5-му постулату, запишем для υ=0:

. (3.110)

Подинтегральное выражение нечетное, так как образовано в виде произве-дения по правилу (чет × нечет × чет). Интеграл, взятый в симметричных пределах от нечетной функций, тождественно равен нулю, так что . Это же имеет место и для других состояний.

3.5.16. Иначе обстоит дело со среднеквадратичным отклонением , на-зываемым среднеквадратичной амплитудой осциллятора. Произведем соответ-ствующие расчеты; вновь обращаясь к 5-му постулату:

, (3.111)

(3.112)

В преобразовании (3.112) использован табличный интеграл

. (3.113)

3.5.17. Сравним среднеквадратичное отклонение с квадратом ампли-туды, предсказываемой на основе формулы, связывающей классическое и квантово-механическое выражение для полной энергии:

, (3.114)

откуда и . (3.115)

Формулы (3.112) и (3.115) практически дают один и тот же результат, поскольку классическая амплитуда А0 – это максимальное отклонение осциллятора от положения равновесия, тогда как квадратичная “амплитуда” усреднена по всем положениям осциллятора, а понятие точной траектории и предельного отклонения не имеет смысла в квантовой механике.

Можно показать, что соответствие классической амплитуды и квантово-механического среднеквадратичного отклонения сохраняется и в других состояниях осциллятора, а именно:

и (3.120)

(в квазиклассическом подходе) (в квантовомеханическом подходе)

3.5.18. Среднеквадратичные амплитуды играют важную роль в экспериментах, связанных с определением равновесных положений ядер в молекулах, например, в электронографии или в рентгеноструктурном анализе. Они также позволяют на основе опытных колебательных спектров (инфракрасного поглощения и комбинационного рассеяния) определить пределы изменения молекулярных “размеров” за счет колебательных деформаций ядерного остова молекулы.


Страница: