Линейный гармонический осциллятор
Рефераты >> Химия >> Линейный гармонический осциллятор

Подставим вместо произведений операторов () и () их выражения (3.82) и (3.81) и опять перенесем постоянные величины Ω в правую часть уравнений:

(3.87)

. (3.88)

В итоге каждое из уравнений (3.87) и (3.88) приобрело стандартный вид уравнения Шредингера, но собственные функции в них () и () отличны от волновой функции исходного состояния Ψυ, а собственные значения отличаются от исходного ευ на постояннуювеличину. Функции () отвечает уровень , на величину 2Ω сдвинутый вниз по отношению к уровню состояния Ψυ, т.е. оператор произвел понижение уровня на один номер:

. (3.89)

Аналогично оператор сдвигает номер уровня и состояния Ψυ на еди- ницу вверх:

. (3.90)

Функции и , полученные с помощью операторов и по формулам (3.89) и (3.90), не нормированы; но в дальнейших расчетах это несу-ественно. Состоянию отвечает уровень , а – уровень , т.е.

. (3.91)

3.5.9. Переход к обычной энергетической шкале с использованием подста-новок (3.74б и 3.74в) дает

. (3.92)

Согласно формуле (3.92), уровни гармонического осциллятора эквидис-тантны, и интервал между.ними равен .

3.5.10. Продолжая исследование лесенки уровней, учтем, что сверху она неограничена, но нижняя граница определена уровнем основного состояния Ψ0, ниже которого не существует состояний системы. Поэтому попытка подействовать оператором понижения на волновую функцию основного состояния должна дать нулевой результат, т.е. применительно к волновой функции основного уровня оператор понижения сыграет роль ее “уничтожителя” – аннигилятора:

(3.93)

Здесь целесообразно вернуться к переменной х. С учетом выражения для (3.80) и подстановки (3.74а) формулу (3.93) после простых преобразований приводим к дифференциальному уравнению для :

, (3.94)

при интегрировании которого получим волновую функцию основного состояния:

. (3.95)

Далее находим нормировочный множитель А0:

(3.96)

. (3.97)

При раскрытии выражения (3.96) использован интеграл Пуассона:

.

3.5.11. Волновая функция является собственной функцией гамильто-ниана. Поэтому для расчета основного уровня достаточно подействовать по-следним наи определить собственное значение

(3.98)

Энергия искомого основного уровня равна . (3.99)

Последовательными сдвигами на вверх, согласно уравнению (3.92), получается вся лесенка энергетических уровней, и схема квантования энергии осциллятора передается формулой:

(3.100)

3.5.12. Оператор повышения позволяет получить весь спектр волновых функций из . Если υ раз подействовать оператором на , то получитсяс точностью до постоянного множителя. Иными словами, генератор волновой функции υ-го состояния – это оператор повышения, возведенный в степень υ:

. (3.101)

Напомним, что любое преобразование волновой функции, в общем случае, порождает необходимость новой нормировки.

3.5.13. Обсудим вид волновых функций осциллятора. Для этого удобно произвести еще одно упрощение за счет замены переменной путем подстановки:

, (3.102)

благодаря чему и оператор повышения , необходимый для полу-чения , примут вид:

, (3.103)

. (3.104)

Постоянный коэффициент в выражении (3.104) ие играет роли, так как к функции Ψυ , генерируемой по формуле (3.105), он добавляет лишь множитель , который далее автоматически входит в состав нормировочного множителя Аυ, и поэтому Ψυ передается формулой:


Страница: