Компоненты, обладающие свойствами понижать горючесть полимерных материалов
По виду веществ, замедляющих горение:
1. Замедлители горения (первичные или основные; активаторы или синергисты; вещества, изменяющие физическую картину процессов горения);
2. Смеси замедлителей горения или антипирирующие составы, синергические смеси;
3. Антипирирующие модификаторы.
По назначению:
1. Вещества общего назначения;
2. Вещества, применяемые для отдельных видов материалов (резин, тканей, пенопластов, пластмасс и других материалов);
3. Вещества, используемые для отдельных полимеров или классов полимеров.
По механизму действия:
1. Катализаторы коксования; вещества, способствующие образованию на поверхности материала кокса;
2. Ингибиторы горения (в газовой фазе);
3. Вещества, снижающие температуру поверхности материала.
По основному действующему элементу или группировке:
1. Фосфор-, азот-, галоген -, серо -, бор-, сурьму - кремнийсодержащие соединения.
2. Вещества, содержащие фосфор и галоген, или фосфор и азот, или другие два или более действующих элементов или группировок (комбинированные соединения).
3. Вещества, содержащие аллильные группы, гетероциклы, пероксидные группы и другие группировки, способствующие процессам сшивания, коксования.
4. Вещества, содержащие связанную воду, карбонаты и другие соединения, разрушение которых сопровождается фазовыми переходами (гидроксиды алюминия или других металлов, бораты и карбонаты металлов щелочноземельных).
5. Комплексные соединения, оксиды и соли металлов переменной валентности, способствующие коксованию (соединения Ре, Сu, V и др.).
Представим данную классификацию в таблице 1, с кратким описанием применения и механизма действия.
Таблица 1. Классификация веществ по основному действующему элементу или группировке
3.2 Применение антипиренов
Анализ научной и патентной информации о применении различных веществ, для снижения горючести полимерных материалов показывает, что к антипиренам обычно относят неорганические и органические вещества, которые содержат в молекулах такие элементы, как галогены, фосфор, азот, бор, металлы, группировки с тем или иным сочетанием этих элементов.
Выделение потенциальных антипиренов из огромного множества существующих соединений зиждется на чисто эмпирической основе. Тем не менее, оно позволяет обособить применение антипиренов как самостоятельное направление в снижении горючести полимерных материалов. Одновременно это стимулирует выявление общих черт в механизме действия антипиренов, обусловленных наличием упомянутых элементов. Важное значение, приобретают количественные критерии эффекта действия антипиренов, сравнительная оценка эффективности разных антипиренов.
Подразделение антипиренов на две группы — инертные и реакционно-способные — является условным и применяется только по отношению к конкретному полимерному субстрату и конкретным условиям получения материала. Реакционно-способными антипиренами в подавляющем большинстве являются органические или элементоорганические соединения. Неорганические антипирены включаются в макромолекулярную структуру полимера редко, лишь при наличии в нем групп, обеспечивающих химическое взаимодействие компонентов (например, при хелатообразовании). Инертные антипирены, или антипирены аддитивного типа, но объему потребления в производстве полимерных материалов занимают ведущее положение. Среди них на первом месте стоят неорганические вещества — окислы, гидроокиси и соли металлов, затем идут производные кислот фосфора и галогенсодержащие соединения.
Антипирены аддитивного типа привлекают разработчиков материалов пониженной горючести тем, что их применение необязательно непосредственно связано с производством полимеров. Введение в композицию может быть осуществлено на стадиях переработки полимеров в изделия без изменения технологии производства материалов. Это существенно расширяет возможности создания новых материалов. Однако, они в большей степени влияют на физико-химические свойства и термостабильность полимерных материалов, чем реакционно-способные. Неорганические антипирены более доступны и дешевы по сравнению с органическими, многие из них нелетучи, образуют при разложении малотоксичные газы.
Можно сказать, что универсальных антипиренов, пригодных для снижения горючести любых полимеров, не существует.
В последние годы отмечается возросший интерес к неорганическим антипиренам, в частности к таким соединениям, как бораты и фторбораты аммония, щелочных и щелочноземельных металлов.
Существует заметное стремление разработчиков для достижения более высокого эффекта в снижении горючести материалов использовать смеси различных антипиренов и их синергистов. Эта относится к антипиренам неорганической и органической природы. С целью облегчения введения антипиренов в композиционные материалы используют концентраты, в которые включают также добавки другого назначения (стабилизаторы, пластификаторы и т. п.).
Ведется поиск антипиренов многофункционального действия, которые помимо главного назначения, должны выполнять роль поверхностно-активных веществ, пластификаторов, вспенивающих агентов, отвердителей или структурообразователей. Нерастворимые и неплавкие (в температурных условиях переработку и эксплуатации материалов) антипирены служат часто наполнителями. В связи с этим, существуют некоторые затруднения в классификации таких веществ (одни исследователи относят их к антипиренам, другие — к наполнителям). Такая ситуация сложилась например, в отношении гидроокиси алюминия, карбонатов щелочи поземельных металлов и алюминия, фосфатов аммония и др. Та как, вещества — потенциальные антипирены — могут проявлять в полимерных материалах и другие функции, то целесообразно при классификации учитывать их основную функцию в изменении физико-химических свойств материалов. Тогда из общего числа антипиренов можно выделить антипирены - пластификаторы, антипирены - наполнители, антипирены - структурообразователи и т.д.
Стремление к более эффективному снижению горючести полимерных материалов приводит разработчиков к применению либо смесей веществ с разными элементами - антипиренами, либо веществ, в молекулах которых одновременно присутствуют такие элементы. Причем явно выражена тенденция к усложнению сочетаний этих элементов
(Р +С1 + Вr, Р + N + Hal, P + МеХ и др.)
Однако это стремление не всегда оправдано.
Среди органических производных кислот фосфора, относящихся к инертным антипиренам, наибольшее распространение получили алкил - и арилфосфаты, их галоидные производные. Многие из них обнаруживают пластифицирующее действие. Их рекомендуют для производства эластичных и пластифицированных материалов (ПВХ, полиолефинов, гибких пенополиуретанов). Пластифицирующее действие подобных антипиренов зависит от строения, углеводородного заместителя, природы галогена и самого полимерного субстрата. Циклические, и разветвленные группы улучшают совместимость и пластифицирующий эффект.
Наряду с эфирами фосфорной кислоты все шире применяют эфиры фосфоновой и фосфористой кислот. Некоторые соединения из этой группы, в частности галогенсодержащие алкилфосфаты, обнаруживают сильные токсические свойства, поэтому понятна необходимость тщательной проверки действия на человека самих антипиренов, а не только продуктов разложения при горении.