Исследование фазовых эффектов в бинарных азеотропных смесях
Рефераты >> Химия >> Исследование фазовых эффектов в бинарных азеотропных смесях

-R(x1lnx1+x2lnx2)= - R lnx1= -1,98· ln 0,5 =1,3724 кал/(моль К).

Что касается объема, то объем вдоль изотермо-изобары может уменьшаться, увеличиваться или на одном участке увеличиваться, а на другом уменьшаться. Но это уменьшение или увеличение незначительно по сравнению с величиной объема пара. Поэтому в общем случае вдоль изотермо-изобар жидкости и пара, энтропию и объем можно принять линейно-зависимыми от состава.

1.3. Некоторые понятия физико-химического анализа.

Коннодой называется отрезок, соединяющий два состояния двухфазной системы. Векторы состояния: < V(1) S(1) x(1)1 x(1)2 x(1)3 … x(1)n-1> и

<V(2) S(2) x(2)1 x(2)2 x(2)3 … x(2)n-1>. Верхний индекс относится к фазам в двухфазной системе. В двухфазной системе имеем фазу с большим объемом и энтропией и фазу с меньшим объемом и энтропией, мы получим конноду, если от вектора состояния с большим объемом и энтропией отнимем вектор состояния фазы с меньшим объемом и энтропией.

Элементы векторов состояния есть проекции этих векторов на оси координат. Вектор, обратный конноде, есть реконнода. Приставка ре- означает обратное действие.

Понятия «коннода» и «реконнода» относятся к двухфазным системам. Проекции конноды на ось состава образуют ноду и реноду. Если же имеет место многофазная система, то фигура, соединяющая состояния каждой фазы носит название гиперконноды [5]. Гиперконнода имеет вид симплекса, число вершин которого равно числу фаз. Проекции на ось состава есть три ноды.

Понятия «коннода» и «нода» использует Финдлей в своей монографии. Имеется перевод на русский язык под редакцией А.В. Раковского 1935г. [4]. Понятие гиперконноды, введено в монографии Л.С. Палатника, А.И. Ландау [5]. В этой монографии также активно используется понятие конноды. На рисунке 1.3 изображена гиперконнода.

Остановимся на понятии «нода». В латинском языке node- узел. В английском node означает: в ботанике узел, в физике и философии - узловой шунт, в медицине - нарост, уплотнение и узловое соединение, астральная точка, пересечение орбит. В математике - точка пересечения двух линий (кривых или прямых). Nodal – центральный, узловой. Nodus - узел, затруднение, сложное сплетение обстоятельств (интриги). Con- приставка означает связь, konjgtium - соединение, сопряженное объединение (conjunct- соединенный).

Отметим, что ноды и конноды связывают различные состояния и составы фаз, находящихся в равновесии. Но в равновесии

Р(1) = Р(2) =…= Р(m)

Т(1) = Т(2) =…= Т(m)

µ(1)1 = µ(2)1 = …= µ(m)1 1.9

µ(1)2 = µ(2)2 =…= µ(m)2

…………………

µ(1)n= µ(2)n=…=µ(m)n

Таким образом, если в качестве переменных выбраны интенсивные параметры, то в этих координатах равновесные состояния фаз соответствуют одной точке, что отражается в рассмотренном выше понятии «узел».

Выбор экстенсивных параметров в качестве переменных дает ноду, конноду, гиперконноду. В [6,7] использовано понятие нод. В [8] вместо ноды используется понятие «соединительная линия». Очень неудачное понятие. Во-первых, не линия, а отрезок, а во-вторых, как быть, когда система многофазна?

Введение нами в дальнейшем направленного отрезка, т.е. отождествления ноды и конноды с векторами, требует введения понятия реконноды и реноды.

Для трех фаз можно использовать понятие векторов. Из трех фаз одна фаза с наинизшей энтропией и объемом, другая фаза с промежуточными значениями и, наконец, с наивысшими значениями (рис.1.4).

В [4] на стр.251 приводится следующее определение: «Прямые, соединяющие точки жидкости и пара, находящиеся в равновесии при Т=const в диаграмме V-x¸y называются нодами (или коннодами)» (рис. 1.5).

Рассмотрено, что коннода жидкость-пар для зеотропных смесей вертикальна по отношению к оси состава[4].

В 1924г вышла книга Партингтона на английском языке ²Chemical an introduction to general thermodynamics and its application to chemistry² [9]. Ранее, в 1913г. вышла книга этого же автора: “Text book of thermodynamics with special reference to Chemistry”. Курс Партингтона, изданный в 1924г., был первым курсом, излагающим не собственные идеи, а главнейшие методы химической термодинамики в доступной форме.

В [10] также упоминается понятие конноды (стр. 49, 121, 125, 299, 504).

Там пишут: «Если на диаграмме имеются две точки, изображающие фазы, находящиеся в равновесии, то, соединив эти точки прямой, получают отрезок, называемый коннодой или нодой». Далее коннодами являются отрезки соединяющие составы (состояния) в диаграммах Т - х, у. Гиперконнода является треугольником коннод (трехфазный треугольник). Прямые, соединяющие две жидкие фазы, лежащие на бинодальной кривой, многие авторы называют нодами.

Вместе с тем в [11] на стр. 552 в разделе ²Эктракция² горизонтальные линии, соединяющие насыщенные растворы в диаграммах Т-х, названы коннодами (иногда их называют нодами) или хордами равновесия.

Кривая, соединяющая концы коннод - бинодаль (рис.1.6). Мы считаем название «хорда» неудачным.

В [12] активно используется понятие нода. В трудах Гиббса отсутствует понятие конноды и ноды [13]. Таким образом, понятие конноды и ноды было введено между 1900 и 1913 годом. Понятие гиперконноды введено в 1961 году.

1.4.Определение ноды как вектора.

Уравнение для потенциала получают путем покоординатного преобразования Лежандра фундаментального уравнения [14, 15], при этом знак преобразованной координаты меняется на противоположный. Поэтому, осуществив преобразование Лежандра относительно всех составляющих фундаментального уравнения, мы получим уравнение нулевого потенциала вида:

-S dT + VdР – x1 dμ1 – x2 dμ2-…- xn dμn=0 1.10

Обычно в литературе приводят уравнение нулевого потенциала с измененными на обратные знаками. Учитывая, что справа стоит нуль, это, вероятно, правомерно.

Коннода (отрезок, соединяющий функции состояния системы), полученная из уравнения 1.10, есть разность между уравнениями этой системы. Как графически изобразить эту разность? Все определяется выбором начальной и конечной точек вектора, которому соответствует коннода. Если мы за начало отсчета выберем жидкую фазу, желая изучить изменение ее состояния, то согласно уравнению 1.10 получим:

(Sп- Sж) dT –(Vп-Vж) dР+ (y1- x1) dμ1 + (y2- x2) dμ2+…+(yn- xn) dμn=0 1.11

Уравнение 1.11 есть скалярное произведение вектора конноды на вектор параметров.

Вектор коннода: <Sп- Sж, Vп-Vж, y1- x1, y2- x2 ,…yn- xn>.

Вектор параметров: <dT, dР, dμ1, dμ2, dμn>.

Если же мы изучаем изменение состояния в паровой фазе, то резонно за начало отсчета выбрать свойства паровой фазы, т.е. получить реконноды:

(Sж- Sп) dT –(Vж-Vп) dР+ (x1- y1) dμ1 + (x2- y2) dμ2+…+(xn- yn) dμn=0 1.12

1.5.Выбор направления ноды и реноды.

Нода - это отрезок, соединяющий составы равновесных фаз в двухфазных системах. Ренода – отрезок, ориентированный противоположно.


Страница: