Исследование структуры тонких полисилоксановых пленок, полученных в плазме разряда, при низких температурах
Рис. 4. ИК-спектр полисилоксановых пленок при —196°. Пленки получены в межэлектродном пространстве (а - в) и на поверхности электродов (г - е) при плотности тока разряда: 0,2 (а, г); 0,5 (б, д) и 1,2 мА/см2 (в, е)
На рис. 3 показано отнесение максимумов полос поглощения vas Si—О—Si в низкотемпературном (—196°) спектре полисилоксановых пленок и схема соответствующих переходов; индексами N, п я I обозначены соответственно квантовые числа колебаний vas, бит. Так, согласно приведенной схеме, полоса поглощения при 1027 см-1 соответствует переходу из состояния, описываемого квантовыми числами ООО, в состояние, где возбуждаются только валентные асимметричные колебания мостика Si—О—Si. Полоса поглощения при 1142 см-1 связана с возбуждением как валентных, так и деформационных колебаний силоксанового мостика.
Однако предложенная схема объясняет происхождение лишь самых интенсивных полос поглощения в низкотемпературном спектре. Более слабые полосы поглощения, например при 1001, 1011, 1048 и 1126 см-1, в спектре чистого мономера, по-видимому, не должны наблюдаться, так как соответствующие им переходы (на схеме они обозначены пунктиром) запрещены правилами отбора А1=0. Тем не менее в ИК-спектре полисилоксановой пленки указанные полосы поглощения присутствуют.
Это свидетельствует о том, что в результате осаждения полисилоксановых пленок в плазме тлеющего разряда происходит неполная полимеризация гексаметилдисилоксана. По-видимому, незаполимеризованный мономер, присутствующий в пленке, достаточно равномерно распределен в объеме полимера. При этом первый, наиболее гладкий, прочный и «сшитый» слой полимера, с хорошей адгезией, толщиной <0,01 мкм образуется в результате поверхностной полимеризации адсорбированных на подложке мономолекулярных слоев мономера под действием частиц высокой энергии, создаваемой в тлеющем разряде. Осаждение последующих слоев полимера происходит различным образом в зависимости от параметров тлеющего разряда, при этом может наблюдаться образование в слое каплеобразных структур [7]. Самую верхнюю фазу полимерного слоя можно рассматривать как своего рода раствор мономера в полимере. Под верхним слоем слабосшитого полимера находится более прочный и жесткий промежуточный слой, образование которого обусловлено действием электронов, проникающих вглубь полимера и реагирующих с оставшимся адсорбированным мономером. Взаимодействие молекул непрореагировавшего мономера с полимерной матрицей, вероятно, и снимает запрет с переходов, для которых А1=0. Влиянием такого взаимодействия окружения можно также объяснить и некоторое отличие в расстояниях между уровнями. Таким образом, можно предположить, что основной причиной возникновения дополнительных полос поглощения в ИК-спектрах полисилоксановых пленок при низких температурах является присутствие в пленке исходного мономера.
Полученные результаты находятся в соответствии с данными электрофизических измерений полисилоксановых пленок. Исследование влияния низких температур на диэлектрические свойства полисилоксановых пленок показало, что в области низких температур наблюдается максимум диэлектрической проницаемости и потерь.
Появление низкочастотных максимумов диэлектрической проницаемости и потерь в области низких температур связано с наличием в полимере низкомолекулярной фазы — непрореагировавшего мономера [8]. Характерно отметить, что максимум диэлектрических потерь наблюдается при —20°; возникновение в ИК-спектре поглощения полисилоксановых пленок новых полос поглощения также происходит при температуре —20°.
Представляло интерес изучить влияние условий проведения полимеризации на структуру образующихся полимерных пленок. Для этих исследований полимерные пленки получали как на поверхности электродов, так и на подложках, помещенных в плазму тлеющего разряда. При этом в ИК-спектрах всех исследованных образцов при низких температурах появляется ряд дополнительных полос (рис. 4). Наибольшее число дополнительных полос как для полимерных пленок, полученных на поверхности электродов «электродных» образцов, так и для пленок, полученных на подложках, помещенных в плазму тлеющего разряда «плазменных» образцов, возникает в области валентного антисимметричного колебания силоксановых групп —1027 см"1 и полосы симметричных деформационных колебаний метильных групп ~1270 см-1. Наряду с появлением новых полос при уменьшении температуры наблюдается рост интенсивности полос поглощения: среди них полоса поглощения с частотой 755 см-1, соответствующая валентным колебаниям метилсилильных групп, полосы поглощения с частотой 1420 и 1460 см-1, которые относят к деформационным колебаниям метильных групп, а также полосы поглощения с частотой 1600 и 1720 см-1, относящиеся к валентным колебаниям связи С=С и С=0 соответственно.
Кроме того, в длинноволновой части спектра наблюдается рост интенсивности полос поглощения с частотой 800 и 845 см-1, соответствующих валентным колебаниям ди- и триметилсилильных групп. В коротковолновой области появляются полосы поглощения валентных колебаний метильных групп (2901 и 2960 см-1), а также широкая полоса поглощения с частотой 3400 см-1, свидетельствующие о присутствии в пленке гидроксильных групп.
Исследование влияния плотности тока разряда на структуру полимерных пленок показало, что для «плазменных» образцов (рис. 4, а — в) вид спектра почти не изменялся при увеличении плотности тока разряда от 0,2 до 1 мА/см2, за исключением наблюдаемого уменьшения интенсивности полос поглощения валентных симметричных (2901 см-1) и антисимметричных колебаний (2960 см-1) колебаний связи С—Н в метильной группе.
ИК-спектры «электродных» образцов (рис. 4, г — е), полученных при низкой плотности тока разряда (до 0,5 мА/см2), оказались идентичными спектрам поглощения «плазменных» образцов. Увеличение плотности тока разряда сопровождалось уменьшением интенсивностей полос поглощения, соответствующих валентным колебаниям групп СН3, а также связей С=С и С=0 (1600, 1720 см-1). При плотности тока разряда 1,0 mA/gm2 практически исчезают дополнительные полосы в области валентных антисимметричных колебаний силоксановых групп и симметричных деформационных колебаний метильных групп. При этом наблюдается увеличение интенсивности полосы поглощения, соответствующей валентным антисимметричным колебаниям связи Si—О—Si, и уменьшение интенсивности полосы, относящейся к деформационным колебаниям метильных групп. Кроме того, следует также отметить, что с возрастанием плотности тока разряда происходит увеличение интенсивности полосы поглощения в области 3400 см~1, соответствующей колебаниям гидроксильной группы.
Относительное содержание метильных групп в тонких полисилоксановых пленках может быть оценено по интенсивности соответствующих спектральных полос поглощения. Отношение оптических плотностей полос поглощения валентных групп Si—О—Si и полос поглощения колебаний метильных групп дает, таким образом, примерную оценку содержания указанных групп. Оказалось, что отношение оптических плотностей полос валентных колебаний группы Si—О—Si к оптическим плотностям полос колебаний групп СНз. Для полимерных пленок, полученных на электродах, .с увеличением плотности тока о т 0,5 до 1,0 мА/см2 увеличивается от 1,5 до 1,8; для «плазменных» образцов отношение плотностей полос поглощения DSi-0-sJDcH3 оставалось практически постоянным и равным 1,55—1,59.