Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином
Рефераты >> Химия >> Исследование концентрирования Cu (II) на анионите АВ-17, иммобилизованном 8-оксихинолином

Силикагель, обработанный смесью эриохром черного Т с жидким анионитом Аликват 336 [44], способен концентрировать следы переходных и щелочноземельных металлов в воде. Щелочные металлы и ионы аммония на этом анионите не сорбируются. Сорбированные металлы элюируют разбавленным раствором хлорной кислоты и определяют атомно-абсорбционным методом. Модифицированный сорбент обеспечивает 250-кратное концентрирование. На этой основе разработан метод колоночной хроматографии для концентрирования ионов Fc(II). Cu(II), Pb(II), Са(И) и Mg(II) из воды и растворов солей натрия, калия и аммония.

Разработан оптоволоконный флуоресцентный сенсор для одновременного определения А1 и Ga или А1 и In с использованием анионообменника Bio-Rad AG1-X4, модифицированного люмогаллионом [50]-» Анализ проводят в динамическом режиме. Минимально определяемые концентрации Al, In и Ga составляют соответственно 0,02 10~6, 3,0-10"6 и 0, 2 10"6 моль-л"1.

Найдены оптимальные условия сорбции U(VI) на силикагеле силохром С-120 с иммобилизованным на нем 2- (5-бром-2-пирилилазо)-5-диэтиламинофенолом [52] . Предложена новая тест-форма для определения урана в фазе сорбата методом спектроскопии диффузного отражения с пределом обнаружения 35 нг урана при объеме пробы 10 мл.

В качестве чувствительного элемента оптического сенсора для обнаружения ионов РЬ(П) и Th(IV) предложено использовать ксиленоловый оранжевый (КО), иммобилизованный на поверхности полиакрилонитрильного волокна, наполненного тонкодисперсным анионообменником. Отклик чувствительного элемента при концентрациях свинца(П) и тория(1У), равных 110" - 3 10" моль л" , формируется за 1-10 мин.

Диски волокнистого материала, наполненного слабоосновным анионообменником с иммобилизованным на нем арсеназо 1, предложено использовать для определения ионов урана (VI). Диски с арсеназо I пригодны для экспрессного определения урана(У1) в динамическом режиме сорбции методом спектроскопии диффузного отражения. Предел обнаружения урана составляет 3 10" моль л". Как и в большинстве других случаев, иммобилизованный реагент повышает чувствительность и избирательность определения. Кроме того, применение этого способа позволяет расширить диапазон определяемых концентраций по сравнению со способом, в котором используют реакции комплексообразования арсеназом в водных растворах.

Целлюлозные материалы модифицировали [53] с помощью этиленлиаминтетрауксусной кислоты и применяли для определения ионов Cr(III), Fe(II) и Pb(II) методом атомно-абсорбционной спектроскопии. Количество ионов металлов, перешедших из раствора на поверхность сорбента, зависит от времени контактирования фаз и концентрации металла в растворе. Лучше всего сорбируются ионы свинца.

Следовые количества ванадая (1У) и ванадия(У) в воде определяют методом атомно-эмиссионной спектроскопии после концентрирования и разделения на колонках, заполненных силикагелем с иммобилизованными на нем фторированными /2-дикетонами — бензоилтрифторацетоном, теноилтриф-торацетоном. Для определения суммарного содержания ванадия (V) и ванадия (IV) пробу пропускали через колонку [43], заполненную 1.5 г модифицированного силикагеля, со скоростью 10 мл мин"1 вместе с ацетатнымии буферным раствором (рН 6). Для элюирования использовали 6 М соляную кислоту, а внутренним стандартом служил (1-10)10"6М раствор кобальта(П). Раздельное определение ванадия и ванадия (IV) основано на их неодинаковой сорбции при различных рН. Для сорбции V(V) раствор с рН 3 пропускали через колонку с модифицированным силикагелем, а для извлечения V(IV) прошедший через колонку раствор нейтрализовали до рН 6 и пропускали через вторую колонку с тем же сорбентом. Предел обнаружения ванадия составляет 0.06 мкг л"1. Ионы железа(Ш), меди(П) и других металлов в больших концентрациях маскируют комплексоном III. Методика была использована для 1-2 мкг • л"1 ванадия в речной воде. Показана возможность применения силикагеля, модифицированного реагентами с этилендиаминовой и этилендиаминтриацетатной функциональными группами, для разделения и концентрирования ванадия (V) и ва-надия(ГУ) [54]. Разделение проводят на двух колонках, заполненных модифицированным силикагелем. В первой колонке находится силикагель, модифицированный соединением с этилендиаминовой функциональной группой, во второй — соединением с этилендиаминтриацетатной группой. При рН 2,5-3,0 в первой колонке сорбируется только ванадий (V). При использовании метода атомно-абсорбционной спектроскопии с индукционно связанной плазмой предел обнаружения ванадия составляет 60 пг мл"1.

Силикагель, модифицированный цинконом, предложено использовать для концентрирования ионов Na, К, Mg. Са, Al, Zn(II), Cd(II), Pb(II), Mo(II), Co(II), Ni(II) и Cr(III) из водных растворов их солей при рН 1- 9. Разработана методика сорбционного атомно-абсорбционного определения ионов указанных металлов после их элюирования с поверхности модифицированного сорбента растворами соляной или хлорной кислот. Цинкон используют как для разделения элементов, так и для очистки растворов ряда солей от примесей Zn(II), Pb(II), Cd(II), Cu(II).

Разработана методика анионообменного концентрирования ионов Cu(II), Zn(II), Pb(II) и Cd(II) с помощью анионообменника, модифицированного сульфонатными азокрасителями [55].

Известен сорбционно-фотометрический метод, в котором в качестве сорбента применяют анионообменник АВ-17х8, модифицированный нитрокса-миназо (НОА). Предел обнаружения микроколичеств палладия составляет величину порядка 10"4 мкг мл"1.

Разработана методика [24] разделения ионов Pb(II), Cu(II), Cd(II), Co(II), Zn(II), Ni(II) и Mn(II) в режиме on-line на картриджах, заполненных сорбентами на основе силикагеля (40 мкм) с иммобилизованной на них гидрокса-мовой кислотой. Градуировочные графики имеют линейный характер в широком интервале концентраций 0,01-5,0 мгл "\ Предел обнаружения для Cu(II), Co(II), Zn(II) и Ni(II) составляет 5-10, для РЬ(П) — 20, для Cd(II) — 30 мкг л"1. Модифицированный сорбент был использован для анализа водопроводной воды.

Для предварительного концентрирования следовых количеств ионов переходных металлов применяют сорбенты на основе силикагеля ODS С18 или смолы XAD-4 с иммобилизованной на них п - трет-бутилкаликс [4] арентетрагидроксамовой кислотой. Изучены условия сорбции ионов Fe(III), Co(II), Pb(II), Се(П), Mn(II), Ni(II), Zn(II) и Cu(II) в области рН 2-7. Разработана методика хроматографического определения Cu(II), Zn(II) и Mn(II) в природных и других водах.

g) Кислородсодержащие реагенты

Модифицированный в динамических условиях додецилбензолсульфо-новой кислотой силикагель был использован для ион-хроматографического разделения переходных металлов [35]. В качестве элюента применяли растворы солей стронция с комплексообразующими добавками лимонной, винной, щавелевой, пирофосфорной и пикриновой кислот. Установлены оптимальные условия селективного определения катионов Cu(II), Ni (II), Pb(II), Co(II), Ce(II). Fe(II) и Mn(II). Продолжительность анализа составляет 25 мин.


Страница: