Исследование каталитических свойств полимерных комплексов
Рефераты >> Химия >> Исследование каталитических свойств полимерных комплексов

Содержание

Введение

Перечень сокращений, символов, обозначений

1. Теоретическая часть

1.1. Полимерметаллические комплексы

1.2 Особенности полимер-металлических комплексов

1.3 Применение полимер-металлических комплексов

1.4 Комплексы полимеров с простыми веществами и другими низкомолекулярными соединениями

1.5 Классификация и виды полиэлектролитов

1.6 Интерполиэлектролитные комплексы

1.7 Лекарственные препараты на полимерной основе

1.8 Образование ИПЭК

1.9 Агломерация комплексообразующих молекул в растворах ИПЭК

1.10 Катализ водорастворимыми комплексами полимер — метал

2. Методическая часть

2.1 Получение и очистка исходных веществ

2.2 Методика проведенных экспериментов

3. Практическая часть

3.1 Результаты и обсуждения

Выводы

Список использованных источников литературы

Приложение

Введение

В последнее время наиболее интенсивно развиваются области исследований на стыке различных направлений, например, катализ полимерами, возникший благодаря взаимодействию таких разделов химии, как химия высокомолекулярных соединений, координационная химия, каталитическая химия. С помощью синтетических макромолекул можно конструировать полимерные катализаторы, работающие по принципу ферментов, которые приближаются к ним по активности и избирательности действия. В свою очередь, это позволило бы с большой эффективностью получать промышленно важные продукты в малых реакционных объемах и без существенных энергетических затрат. Также использование таких катализаторов могло бы привести к отказу от использования многих дорогостоящих катализаторов, таких, как платина, палладий и других. В решении важных проблем химической и нефтехимической отраслей промышленности большую роль могут сыграть каталитически активные металлокомплексы. В связи с этим резко возрастает актуальность данного направления вследствие резко возрастающего интереса к таким доступным источникам органического сырья, как нефть, природный газ. Однако применение катализаторов данного типа совершенно не ограничивается только данной областью применения. Синтез новых катализаторов типа металл : полимерный лиганд, лиганд : металл: лиганд, в сочетании с синтезом каталитически активных металлокомплексов, нанесенных на полимерные носители, открывает также огромную область их применения, начиная от простых реакций обмена в неорганической химии, и заканчивая сложнейшими превращениями веществ в биохимии. Данная работа и посвящена синтезу таких металлполимерных комплексов, а также исследованию их каталитических свойств.

Цель работы:

1) получение металлполимерных комплексов состава ПВПД: Cо2+, ПВПД: Fe2+, ПВПД: Cd2+.

2) исследование устойчивости и возможности существования металлполимерных комплексов состава ПВПД: Cо2+, ПВПД: Fe2+, ПВПД: Cd2+.

3) изучение влияния различных факторов (Т°, состав растворителя) на поведение комплексов ПВПД: Cо2+, ПВПД: Cd2+.

4) исследование каталитических свойств полученных металлполимерных комплексов.

Научная новизна темы:

Научная новизна данной работы в том, что до этого не проводилось исследований по получению данных металлполимерных комплексов, а также, соответственно, не проводилось изучение их каталитических свойств в растворах.

Достоверность полученных данных:

В работе использовались химически чистые реактивы, для некоторых была применена дополнительная очистка. Растворитель очищался бидистилляцией, и использовалась чистая и высушенная химическая посуда. Используемые методы (потенциометрическое титрование, вискозиметрия) очень чувствительны и точны к образованию металлполимерных комплексов, что доказано предыдущими исследованиями. Используемые приборы были предварительно настроены или градуированы (аналитические весы, иономер).

Практическая значимость:

Синтезированные металлполимерные комплексы могут быть использованы для дальнейших исследований их свойств применительно к конкретным реакциям.

Перечень сокращений, символов, обозначений

БАВ - биологически активное вещество

БПЭ – блокирующий полиэлектролит

ГЛБ - гидрофильно-липофильный баланс

ИПЭК - интерполиэлектролитные комплексы

ИЭТ - изоэлектрическая точка

ЛВ – лекарственное вещество

ЛПЭ – лиофилизирующий полиэлектролит

ПАК – полиакриловая кислота

ПВПД - поли-N-винилпиролролидон

ПВПС - поливиниловый спирт

ПМАК – полиметилакриловая кислота

ПЭГ – полиэтиленгликоль

П4ВП - поли-4-винилпиридин

ТИПЭК - тройные интерполиэлектролитные комплексы

ЯМР – ядерный магнитный резонанс

1. Теоретическая часть

1.1 Полимерметаллические комплексы

Полимерметаллические комплексы образуются в результате взаимодействия между функциональными группами макромолекул и ионами переходным металлов (Cu2+, Cd2+, Zn2+, Ni2+, Co2+, Mg2+, Fe2+ и др.). Обычно связь между ионом металла и полимерным лигандом осуществляется посредством донорно-акцепторного взаимодействия с образованием координационной связи (хелатные комплексы) или замещением протона лиганда ионом металла с образованием ионной связи. Ионы металлов являются акцепторами; атомы O-, -N, -S, -F, -Cl полимерной цепи, предоставляющие пару электронов для образования связи, являются донорами. В низкомолекулярных комплексных соединениях обычно координационное число металла равно 4 или 6. В случае макромолекулярных лигандов могут образовываться координационные центры состава 1:1, 1:2, 1:3 или 1:4. Свободные вакансии координационной сферы ионов переходных металлов занимают молекулы растворителя или других низкомолекулярных веществ. Изменение конформации полимерного лиганда в процессе комплексообразования может значительно влиять на результаты расчетов координационного числа иона металла и константы устойчивости комплексов. Так, до сих пор остается открытым вопрос: имеет место ступенчатое образование комплекса полимер – металл или сразу образуется полимер-металлический комплекс с максимальным координационным числом?

1.2 Особенности полимер-металлических комплексов

Характерной особенностью комплексов полимер – металл в отличие от комплексов низкомолекулярный лиганд – металл является близость всех последовательных констант комплексообразования. Это связано с высокой локальной плотностью активных центров взаимодействия в полимерных цепях, т.е. «полимерный эффект» может играть значительную роль в образовании комплексов полимер – ион металла.

Комплексы полимер – ион металла в воде имеют компактную структуру, стабилизированную внутри- и межцепными координационными «сшивками», которые существенно изменяют размер клубка полилиганда. При добавлении к раствору поли-4-винилпиридина (П4ВП) в метаноле вязкость уменьшается, т.е. происходит сворачивание цепей П4ВП вследствие внутрицепного хелатирования. Сжатие макромолекул различно для разных ионов металла, т.е. структура полимер-металлического комплекса зависит от типа иона металла.

На устойчивость комплексов полимер – ион металла в растворе сильное влияние оказывают такие факторы как конформация и микроструктура полимерных лигандов, природа металлов, степень ионизации, природа противоионов (анионов) металлов, рН среды, ионная сила раствора, природа растворителя, температура, т.е. все те факторы, которые определяют конформационное состояние макромолекул в растворе и их гидродинамические характеристики. Многочисленные исследования систем полимер – металл посвящены установлению влияния этих факторов на свойства и структуру образующихся полимер-металлических комплексов.


Страница: