Белки молока, строение и функции
Первичная структура определяется числом и расположением α-аминокислот, конфигурацией связей в полипептидных цепях, и если белки состоят из нескольких полипептидных цепей - местоположением и типом поперечных связей. Выявлена первичная структура некоторых важных белков молока, в том числе αs1-, β-казеин, Н-казеина. Например, β-казеин образуется из полипептидной цепи, в которую входит 209 аминокислот: 4 - аспарагиновая кислота, 5 АСН-аспарагин, 9 - треонина, 11 - серина, 5 - серинфосфорная кислота, 17 - глутаминовая кислота, 22 - глютамин, 35 - пролиновая, 5 - глициновая, 5 - аланин, 19 - валиновая. А - первичная структура as1 - казеин содержит 199 АК, Н - казеин 169, 6 - метионина, 22 - лейцина, 11 - лизина, 5 - гистидина, 4 - изолейцина, 4- тирозина, 1 - трептофана, 5 - аргенина.
Аминокислота пролин определяет структуру и обуславливает складчатое строение полипептидных цепей. Аминокислоты находятся в цепи в определенной последовательности. Каждая полипептидная цепь имеет концевую NH2-групп и концевую COOH групп H2N – CH = СН – СООН.
Эти концевые группы могут реагировать с различными химическими веществами.
Первичная структура белков основана на главных валентных пептидных связях и дисульфидных связей. Они настолько стабильны, что при обработке и переработке молока не разрушаются энергетическими воздействиями. Поэтому первичная структура белков молока разрушается только при ферментативном распаде белка в процессе созревания сыров.
Вторичная структура. Это пространственное взаимное расположение аминокислотных остатков в полипептидной цепи и представляет собой цепь спиралеобразной конфигурации, которая образуется за счет водородного мостика между полипептидными цепями.
Водородная связь, обладая незначительной энергией связи, может расщепляться при обработке и переработке молока, например, при высокотемпературной пастеризации.
Третичная структура - представляет пространственное расположение полипептидной цепи, отдельные участки которой могут соединяться между собой прочными дисульфидными связями, возникающими между остатками цистеина. В образовании третичной структуры участвуют и другие связи - гидрофобные, электростатические, водородные и прочие. В зависимости от пространственного расположения полипептидной цепи форма молекул белков может быть различной. Если полипептидная цепь образует молекулу нитевидной формы, то белок называется фибрилярным, если она уложена в виде клубка - глобулярным (глобулус - шарик). Белки молока относятся к глобулярным белкам. Изучение их вторичной и третичной структур показало, что казеин в отличие от обычных глобулярных белков почти не содержит α-спиралей, α-лактальбулин и β-лактоглобулин содержит большое количество спирализованных участков. Казеин, вероятно, занимает промежуточное положение между компактной структурой глобулы и структурой беспорядочного клубка, который обычно наблюдается при денатурации глобулярных белков. Такая структура обеспечивает хорошую расщепляемость казеина протеолитическими ферментами при переваривании в нативном (природном) состоянии без предварительной денатурации.
Четвертичная структура характеризует способ расположения в пространстве отдельных полипептидных цепей в белковой молекуле, состоящей из нескольких таких цепей или субъединиц. Глобулярные белки, обладающие четвертичной структурой, могут содержать большое количество полипептидных цепей, тесно связанных друг с другом в компактную мицеллу, которая ведет себя в растворе как одна молекула.
Так, казеиновая мицелла среднего размера должна состоять из нескольких тысяч полипептидных цепей фракций казеина, определенным образом связанных друг с другом.
Казеин является основным белком молока, его содержание в молоке колеблется от 2,3 до 2,9%. Элементарный состав казеина, %: С - 53,1, Н - 7,1, азот - 15,6, О - 22,6, S - 0,8; Р - 0,8. Он относится к фосфопротеидам, т. е. содержит остатки Н3РО4 (органически присоединенные к аминокислоте серину моноэфирной связью (О - Р).
Казеин в молоке содержится в виде сложного комплекса казеината кальция с коллоидным фосфатом кальция - так называемого казеинат-кальций-фосфатный комплекс (ККФК), в состав которого входит небольшое количество лимонной кислоты, магния, калия и натрия.
В свежем молоке ККФК содержится в виде амицелл - это агрегаты частиц, состоящих из так называемых сублицелл.
Соединение субмицелл в мицеллы происходит с помощью фосфата кальция и кальциевых мостиков. Казеиновые мицеллы сравнительно стабильны в свежевыдоенном молоке. Они сохраняют свою устойчивость при нагревании молока до относительно высоких температур и при его механической обработке. Стабильность мицелл зависит от содержания в молоке растворимых солей кальция, химического состава казеина, РН молока и других факторов.
1.3 Химические свойства казеина
Около 95% казеина находится в молоке в виде сравнительно крупных коллоидных частиц — мицелл — которые имеют рыхлую структуру, они сильно гидратированы.
В растворе казеин имеет ряд свободных функциональных групп, которые обуславливают его заряд, характер взаимодействия с Н2О (гидрофильность) и способность вступать в химические реакции.
Носителями отрицательных зарядов и кислых свойств казеина является β и γ-карбоксильные группы аспаргиновой и глютаминовой кислот, положительных зарядов и основных свойств — å-аминогрупп лизина, гуанидовые группы аргинина и имидазольные группы гистидина. При рН свежего молока (рН 6,6) казеин имеет отрицательный заряд: равенство положительных и отрицательных зарядов (изоэлектрическое состояние белка) наступает в кислой среде при рН 4,6-4,7; следовательно в составе казеина преобладают дикарбоновые кислоты, кроме того, отрицательный заряд и кислые свойства казеина усиливают гидроксильные группы фосфорной кислоты. Казеин принадлежит к фосфоропротеидам — в своем составе содержит Н3РО4 (органический фосфор), присоединенную моноэфирной связью к остаткам серина.
Гидрофильные свойства зависят от структуры, заряда молекул, рН среды, концентрации в ней солей, а также других факторов.
Своими полярными группами и пептидными группировками главных цепей казеин связывает значительное количество Н2О — не более 2 ч. на 1 ч. белка, что имеет практическое значение, обеспечивает устойчивость частиц белка в сыром, пастеризованном и стерилизованном молоке; обеспечивает структурно-механические свойства (прочность, способность отделить сыворотку) кислотных и кислотно-сычужных сгустков, образующихся при выработке кисломолочных продуктов и сыра, т. к. в процессе высокотемпературной тепловой обработке молока денатурируется β-лактоглобулин взаимодействуя с казеином и свойства гидрофильные казеина усиливаются: обеспечивая влагоудерживающую и водосвязывающую способность сырной массы при созревании сыра, т. е. консистенция готового продукта.
Казеин – амфотерин. В молоке он имеет явно выраженные кислые свойства.
NН2 NН+