Белки и нуклеиновые кислоты
4. Ароматические – фенилаланин, тирозин, триптофан:
5. С анионобразующими группами в боковых цепях-аспарагиновая и глутаминовая кислоты:
6. и амиды-аспарагиновой и глутаминовой кислот – аспарагин, глутамин.
7. Основные – аргинин, гистидин, лизин.
Второй вид классификации основан на полярности R-групп аминокислот. Различают полярные и неполярные аминокислоты. У неполярных в радикале есть неполярные связи С–С, С–Н, таких аминокислот восемь: аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин.
Все остальные аминокислоты относятся к полярным (в R-группе есть полярные связи С–О, С–N, –ОН, S–H). Чем больше в белке аминокислот с полярными группами, тем выше его реакционная способность. От реакционной способности во многом зависят функции белка. Особенно большим числом полярных групп, характеризуются ферменты. И наоборот, их очень мало в таком белке как кератин (волосы, ногти).
Аминокислоты классифицируют и на основе ионных свойств R-групп (таблица 1). Кислые (при рН=7 R-группа может нести отрицательный заряд) это аспарагиновая, глутаминовая кислоты, цистеин и тирозин. Основные( при рН =7 R-группа может нести положительный заряд) – это аргинин, лизин, гистидин. Все остальные аминокислоты относятся к нейтральным (группа R незаряжена).
Таблица 1 – Классификация аминокислот на основе полярности R-групп.
Аминокислоты |
Принятые однобуквенные обозначения и символы |
Изоэлектрическая точка, рI |
Среднее содержание в белках,% | ||
Англ. |
символ |
Русск. | |||
1. НеполярныеR-группы Глицин Аланин Валин Лейцин Изолейцин Пролин Фенилаланин Триптофан 2. Полярные, незаряженныеR-группы Серин Треонин Цистеин Метионин Аспарагин Глутамин 3. Отрицательно заряженные R-группы Тирозин Аспарагиновая к-та Глутаминовая к-та 4. Положительно заряженныеR-группы Лизин Аргинин Гистидин |
GLy ALa VaL Leu Lie Pro Phe Trp Ser Thr Cys Met Asn GLn Tyr Asp GLy Lys Arg His |
G A V L I P F W S T C M N Q Y D E K R N |
Гли Ала Вал Лей Иле Про Фен Трп Сер Тре Цис Мет Асн Глн Тир Асп Глу Лиз Арг Гис |
5,97 6,02 5,97 5,97 5,97 6,10 5,98 5,88 5,68 6,53 5,02 5,75 5,41 5,65 5,65 2,97 3,22 9,74 10,76 7,59 |
7,5 9,0 6,9 7,5 4,6 4,6 3,5 1,1 7,1 6,0 2,8 1,7 4,4 3,9 3,5 5,5 6,2 7,0 4,7 2,1 |
По числу аминных и карбоксильных групп аминокислоты делятся на моноаминамонокарбоновые, содержащие по одной карбоксильной и аминной группе; моноаминодикарбоновые (две карбоксильные и одна аминная группа); диаминомонокарбоновые (две аминные и одна карбоксильная группа).
По способности синтезироваться в организме человека и животных все аминокислоты делятся на заменимые, незаменимые и частично незаменимые.
Незаменимые аминокислоты не могут синтезироваться в организме человека и животных они обязательно должны поступать вместе с пщей. Абсолютно незаменимых аминокислот восемь: валин, лейцин,изолейцин,треонин,триптофан, метионин,лизин, фенилаланин.
Частично незаменимые-синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются арганин, гистидин, тирозин.
Заменимые аминокислоты синтезируются в организме человека в достаточном количестве из других соединений. Растения могут синтезировать все аминокислоты.
1.3 Кислотно-основные свойства аминокислот
Кислотно-основные свойства аминокислот связаны с наличием в их структуре двух ионизируемых групп-карбоксильной и аминогруппы, поэтому амнокислоты могут проявлять свойства как кислот, так и оснований, т.е. они являются амфотерными соединениями. В кристаллическом состоянии и в водных растворах a-аминокислоты существуют в виде биполярных ионов, называемых также цвиттерионами. Ионное строение обуславливает некоторые особенности свойств a-аминокислот: высокую температуру плавления (200-300°С), нелетучесть, растворимость в воде и нерастворимость в неполярных органических растворителях. С растворимостью аминокислот в воде связана их всасываемость и транспорт в организме. Ионизация молекул аминокислот зависит от рН раствора. Для моноаминомонокарбоновых кислот процесс диссоциации имеет следующий вид:
В сильно кислых растворах аминокислоты присутствуют в виде положительных ионов, а в щелочных – в виде отрицательных.
Кислотно-основные свойства аминокислот можно объяснить исходя из теории кислот и оснований Бренстеда-Лоури. Полностью протонированная a-аминокислота (катионная форма) с позиции теории Бренстеда является двухосновной кислотой, содержащей две кислотные группы:недиссоциированную карбоксильную группу (– СООН) и протонированную аминогруппу (NН3), которые характеризуются соответствующими значениями рКa1 и рКa2.
Величины рК для аминокислот определяют по кривым титрования. Рассмотрим кривую титрования аланина (рис. 1).
Рис. 1 – кривые, полученные при титровании 0,1М раствора аланина 0,1М раствором HCl (а) и 0,1М растором NaOH (б).
Из кривой титрования аланина следует, что карбоксильная группа имеет рКa1=2,34, а протонированная аминогруппа рКa2 = 9,69. При рН = 6,02 аланин существует в виде биполярного иона, когда суммарный электрический заряд частицы равен 0. При этом значении рН молекула аланина электронейтральна. Такое значение рН называют изоэлектрической точкой и обозначают рНиэт или рI. Для моноаминомонокарбоновых кислот изоэлектрическая точка рассчитывается как среднее арифметическое двух значений рКa. Например для аланина она равна:
рI = Ѕ × (рКa1 + рКa2) = Ѕ × (2,34 + 9,69) = 6,02
При значении рН, превышающем изоэлектрическую точку, аминокислота заряжается отрицательно, а при значении рН ниже рI аминокислота несет суммарный положительный заряд. Например, при рН = 1,0 все молекулы аланина существуют в форме ионов