Концепции современного естествознания
Рефераты >> Естествознание >> Концепции современного естествознания

Для наглядности эту начальную стадию делят на четыре "эры". Для каждой из них можно выделить преобладающую форму суще­ствования материи, в соответствии с чем и даны названия.

В самом начале эры адронов, продолжавшейся 0,0001 с, была вели­ка энергия гамма-квантов. При высоких температурах могли суще­ствовать частицы только больших масс, для которых существенно и гравитационное взаимодействие. Элементарные частицы разделяют на адроны и лептоны, причем первые могут участвовать в сильных и быстрых взаимодействиях, а вторые — в более слабых и медленных, поэтому первые эры получили такие названия.

Адронная эра — эра тяжелых частиц и мезонов. Плотность d > 1014, Т > 1012 К, t< 0,0001 с. Основную роль играет излучение, количества вещества и антивещества могут быть примерно равными. В конце адронной эры происходит аннигиляция частиц и античастиц, но оста­ется некоторое количество протонов. Из равновесия с излучением

вышли последовательно гипероны, нуклоны, К- и p-мезоны и их античастицы. Продолжительность эры лептонов 0,0001 <t< 10с, при этом 1010 К < Т <1012 К; 104 < d < 1014 Основную роль, играют легкие части­цы, принимающие участие в реакциях между протонами и нейтро­нами. Постепенно из равновесия с излучением вышли мю-мезоны и их античастицы, электронные и мезонные нейтрино, а избыточные мюоны распались на электроны, электронное антинейтрино и мю-онное нейтрино. В конце эры лептонов происходит аннигиляция элек­тронов и позитронов. Спустя 0,2 с Вселенная становится прозрачной для электронных нейтрино, и они перестают взаимодействовать с ве­ществом. Согласно теории, эти реликтовые нейтрино сохранились до нашего времени, но температура их должна была снизиться до 2 К, поэтому пока их не могут обнаружить.

Далее приходит фотонная эра продолжительностью 1 млн лет. Ос­новная доля массы—энергии Вселенной приходится на фотоны, ко­торые еще взаимодействуют с веществом. В первые 5 мин эры про­исходили события, во многом определившие устройство нашего мира. В конце лептонной эры происходили взаимные превращения прото­нов и нейтронов друг в друга. К началу эры фотонов количества их были примерно равными. При уменьшении температуры протонов стало больше, поскольку реакции с образованием протонов оказы­вались энергетически более выгодными и, значит, более вероятны­ми. Это определило скорости реакций, и к началу эры число нейтро­нов остановилось на 15%.

В начале эры излучения 3000 К < T< 1010 К; 10-21 < d < 104г/см3 ней­троны захватываются протонами, и происходит образование ядер ге­лия. Кроме того, за эти первые минуты некоторое количество нейт­ронов пошло на образование ядер бериллия и лития, а некоторое количество распалось. В результате доля гелия в веществе могла со­ставить 1/3. В конце эры температура снизилась до 3 000 К, плотность уменьшилась на 5-6 порядков, в результате чего создались условия для образования первичных атомов. Излучение отделилось от веще­ства, Вселенная стала прозрачной для вещества, и пришла новая эра — эра вещества. Излучение играет главную роль, образуется гелий. В конце эры главную роль в образовании вещества Вселенной начина­ет трать вещество.

В звездную эру, наступившую при t порядка 1 млн. лет, Т прибли­зительно равно 3 000 К, а плотность d порядка 10-21г/см3 Начинается сложный процесс образования протозвезд и протогалактик.

Основными источниками сведений о распространенности химических элементов служат данные о составе Солнца полученные с помощью спектрального анализа, и результаты лабораторных химических анализов материала земной коры. метеоритов пород поверхности Луны и планет Принято выражать количество атомов какого-либо химического элемента по отношению к кремнию в разных природных системах. поскольку кремний принадлежит к обильным и труднолетучим элeментам.

С ростом порядкового номера распространенность элементов убывает неравномерно, причем элементы с четным порядковым номе' ром более распространены, чем с нечетным, особенно элементы с массовым числом, кратным 4, например. Не, С, О, Ne, Мд, Si, S, Ar, Са. ряд максимумов соответствует элементам с ядрами, у которых число протонов или нейтронов равно 2. 8. 20, 50, 82, 126 . Этим "магическим" числам соответствуют заполненные ядерные оболочки, характеризующие устойчивые ядра. По этому поводу американс­кие космохимики Гарольд Юри и Г.Зюсс сказали так: "Представляется, что распространенность элементов и их изотопов определяется ядерными свойствами и что окружающее нас вещество похоже на юлу космическою ядерною пожара, в котором оно было создано".

Большинство газов (или летучей части солнечного вещества) — Н, Не, СО, О, N, СО2 и все инертные газы. Основную часть внутрен­них планет и метеоритов составляют нелетучие элементы солнечного вещества — Si, Ре, Vg, Са, Al, Mi, Na. Проводя детальные сравнения, Виноградов показал, что эти породообразующие элементы планет и метеоритов непосредственно выброшены Солнцем, и не за­хвачены из других областей Галактики. Некоторые различия в составе планет связаны с вторичными процессами и тем, что элементы входят в разные соединения, пребывая в разных агрегатных состоя­ниях. Особенно близок состав нелетучей части элементов Солнца и наиболее распространенных каменных метеоритов — хондритов.

Летучая часть солнечного вещества, существующая в виде газов при Т>0, при низких температурах переходит в твердое состояние, а атомы газов вступают в соединения. Инертные газы в соединения не вступают, оставаясь и при низких температурах в газообразном со­стоянии. Земля и метеориты сохранили летучие элементы в той сте­пени, и какой они проявляли свою активность, поэтому инертные газы как на Земле, так и в метеоритах встречаются редко. Что каса­ется изотопного состава С, О, Si, Cl, Fe, Ni, Со, Ва, К, Си, то он оди­наков на Земле и в метеоритах. Относительно Солнца таких широких исследований не проведено, но для С12:С13 он такой же, как и на Земле. Исследования по инертным газам показали идентичность изо­топного состава в солнечной системе, но на других звездах это отно­шение иное.

Таким образом, все тела солнечной системы построены из неболь­шого числа элементов (около 28 номера таблицы Менделеева распро­страненность существенно падает) и имеют единое происхождение. Метеориты, большинство которых оказались очень древними, дали ценную научную информацию об истории возникновения отдельных тел солнечной системы. По оценкам, основанным на радиоактив­ном распаде урана, тория, рубидия и калия, их возраст около 4,5—4,6 млрд лет, т. е. совпадает с возрастом Земли и Луны. В них насчитываются примерно 66 минералов, большинство из них похожи на земные. Вероятно, метеориты образовались тогда же, что и плане­ты земной группы. Согласно принятой в геологии классификации, все элементы разделены на четыре группы. Атмофильные элементы склонны накапливаться в атмосферах; литофильные образуют твер­дые оболочки планет; халькофильные создают соединения с серой, подобные меди; сидерофильные способны растворяться в сплавах же­леза.


Страница: