Концепции современного естествознания
Рефераты >> Естествознание >> Концепции современного естествознания

Сейчас этот принцип формулируют так: внешнее воздействие, которое выводит систему из состояния термодинамического равновесия, вызывает в ней процессы, направленные на ослабление резуль­татов такого влияния или, еще современнее, что система выведенная внешним воздействием из состояния с минимальным производством энтропии, стимулирует развитие процессов, направленных на ослабление внешнего воздействия. Ле Шателье применял этот закон в промыш­ленных условиях для оптимизации синтеза аммиака, производства стекла и цемента, выплавки металлов, получения взрывчатых ве­ществ. Катализаторы, как оказалось, не влияют на положение рав­новесия: они одинаково влияют на прямую и обратную реакции, ускоряют достижение равновесия, но не сдвигают его.

Примером применения этого принципа вне химии может быть следующая ситуация:

Массовое размножение грызунов влечет за собой увеличение численности хищников и паразитов. Они сокращают численность популяции грызунов. Но вслед за этим сокращается численность хищников, так как они начинают погибать от голода. Т. е. Равновесие в экосистеме восстанавливается.

4. Поясните понятие «фазы» и «фазового перехода». Какие фазовые переходы относят к фазовым переходам первого и второго родов, что лежит в основе такой классификации. Приведите примеры.

фазами называют различные однородные части физико-химичес­ких систем. Однородным является вещество, когда все параметры со­стояния вещества одинаковы во всех его элементарных объемах, раз­меры которых велики по сравнению с межатомными состояниями. Смеси различных газов всегда составляют одну фазу, если во всем объеме они находятся в одинаковых концентрациях. Одно и то же вещество в зависимости от внешних условий может быть в одном из трех агрегатных состояний — жидком, твердом или газообразном. В зависимости от внешних условий система может находиться в рав­новесии либо в одной фазе, либо сразу в нескольких фазах.

Во время фазового перехода температура не меняется, но меняет­ся объем системы. Фазовые переходы бывают нескольких родов. Существуют такие условия давления и температуры, при которых вещество находится в равновесии в разных фазах. Температуры, при которых происходят переходы из одной фазы в другую, называются температурами перехода. Они зависят от дав­ления, хотя и в различной степени: температура плавления — сла­бее, температуры парообразования и сублимации — сильнее.

Изменения агрегатных состояний вещества называются фазовыми переходами 1-го рода, если: 1) температура постоянна во время все­го перехода; 2) меняется объем системы; 3) меняется энтропия системы.

Чтобы произошел такой фазовый переход, нужно данной массе вещества сообщить определенное количество тепла, соответствующе­го скрытой теплоте превращения. В самом деле, при переходе из бо­лее конденсированной фазы в фазу с меньшей плотностью нужно сообщить некоторое количество энергии в форме теплоты, которое пойдет на разрушение кристаллической решетки (при плавлении) или на удаление молекул жидкости друг от. друга (при парообразова­нии). Во время преобразования скрытая теплота пойдет на преодоле­ние сил сцепления, интенсивность теплового движения не изменит­ся, в результате температура остается постоянной. При таком перехо­де степень беспорядка, следовательно, и энтропия, возрастает. Если процесс идет в обратном направления, то скрытая теплота выделяется.

Фазовые переходы 2-го, 3-го и т.д. родов связаны с порядком тех производных термодинамического потенциала дФ, которые ис­пытывают конечные изменения в точке перехода.

Такая классификация фазовых превращений связана с работами физика-теоретика Пауля Эренфеста. Так, в случае фа­зового перехода 2-го рода в точке перехода испытывают скачки про­изводные второго порядка: теплоемкость при постоянном давлении с = -Т(д2Ф/дТ2), сжимаемость b=-(1/V0)( д2Ф/дp2), коэффициент теплового расширения a= (1/V0)( д2Ф/дTp), тогда как первые произ­водные остаются непрерывными. Это означает отсутствие выделения (поглощения) тепла и изменения удельного объема (Ф — термоди­намический потенциал).

В 1937 г. Ландау показал, что фазовые переходы 2-го рода связаны с изменени­ем симметрии системы: выше точки перехода система, как правило, обладает бо­лее высокой симметрией. Например, в магнетике спиновые моменты выше точки ориентированы хаотически, и одновременное вращение всех спинов вокруг одной оси на одинаковый угол не изменяет свойств системы. Ниже точки перехода спи­ны имеют некоторую преимущественную ориентацию, и одновременный их пово­рот меняет направление магнитного момента системы. Ландау ввел коэффициент упорядочения и разложил термодинамический потенциал в точке перехода по сте­пеням этого коэффициента, на основе чего построил классификацию всех возмож­ных типов переходов, а также теорию явлений сверхтекучести и сверхпроводи­мости.

В окружающей нас природе мы особенно часто наблюдаем фазо­вые переходы воды. При переходе воды в пар происходит сначала испарение — переход поверхностного слоя жидкости в пар, при этом в пар переходят только самые быстрые молекулы: они должны пре­одолеть притяжение окружающих молекул, поэтому уменьшаются их средняя кинетическая энергия и, соответственно, температура жид­кости. Наблюдается в быту и обратный процесс — конденсация.

Оба эти процесса зависят от внешних условий. В некоторых случа­ях между ними устанавливается динамическое равновесие, когда чис­ло молекул, покидающих жидкость, становится равным числу моле­кул, возвращающихся в нее. Опыт показывает, что насыщенный пар, или пар, находящийся в динамическом равновесии со своей жидко­стью, не подчиняется закону Бойля — Мариотта, поскольку его дав­ление не зависит от объема. Процессы испарения и конденсации воды обуславливают сложные взаимодействия атмосферы и гидросферы, имеют важное значение в формировании погоды и климата. Между атмосферой и гидросферой происходит непрерывный обмен веще­ством (круговорот воды) и энергией.

Исследования показали, что с поверхности Мирового океана, со­ставляющего 94 % земной гидросферы, за сутки испаряется около 7 000 км3 воды и примерно столько же выпадает в виде осадков. Во­дяной пар, увлекаемый конвекционным движением воздуха, подни­мается вверх и попадает в холодные слои тропосферы. По мере подъе­ма пар становится все более насыщенным, затем конденсируется, об­разуя дождевые и облачные капли. В процессе конденсации пара в тропосфере за сутки выделяется около 1,6-1022 Дж теплоты, что в десятки тысяч раз превосходит вырабатываемую человечеством энер­гию за то же время.

Если процесс перехода жидкости в пар происходит во всем объе­ме, то его называют кипением. Разрыв пузырьков у поверхности ки­пящей жидкости свидетельствует, что давление пара в них превыша­ет давление над поверхностью жидкости.

Поздней осенью, когда после сырой погоды наступает резкое по­холодание, на ветвях деревьев и на проводах можно наблюдать иней — это десублимировавшие кристаллики льда. Подобное явление ис­пользуют при хранении мороженого, когда углекислота охлаждает­ся, так как переходящие в пар молекулы уносят энергию. На Марсе явления сублимации и десублимации углекислоты в его полярных шапках играют такую же роль, что и испарение — конденсация в атмосфере и гидросфере Земли.


Страница: