Концепции современного естествознания
Рефераты >> Естествознание >> Концепции современного естествознания

5. в чем уникальность строения атома углерода и почему он так распространен в соединениях. Почему нашу жизнь иногда называют углеродной.

С точки зрения химии жизнь — это всевозможные превращения разнообразных крупных и сложных молекул, главным элементом ко­торых является углерод. Он важен не с точки зрения распространенности на Земле, в земной коре углерода всего 0,055 %, в то время как кислорода 60,50 %, кремния 20,45 % и даже титана 0,27 %. В атмосфере двуокиси углерода 0,03 %, т. е. углерода всего 0,008 %. Все биологически функциональные вещества, кроме несколь­ких солей и воды, содержат углерод. Это белки, жиры, углеводы, гормоны, витамины. Число соединений углерода огромно. Они назы­ваются органическими соединениями, поскольку когда-то считалось, что такие молекулы могут образовываться только в живых организ­мах.

Органическая химия посвящена изучению углерода и его соеди­нений. Атомный номер углерода — 6, его ядро содержит шесть про­тонов и шесть нейтронов, вокруг ядра вращаются шесть электронов, масса атома С равна 12. При химических реакциях углерод способен присоединить 4 электрона и образовать устойчивую оболочку из восьми электронов, т. е. имеет валентность, равную четырем, и спо­собен к прочной ковалентной (присоединением электронов) связи. Например, эмпирическая формула одного из таких прочных соеди­нений — метана — СН4, а в структурном изображении — это тетра­эдр (четыре симметричные связи углерода).

Уникальным свойством углерода является его способность образо­вывать стабильные цепи и кольца, которые обеспечивают разнооб­разие органических соединений, причем эти связи могут быть крат­ными. При этом важно расположение атомов в пространстве, которое приводит к оптической активности вещества, к отличию в повороте плоскости поляризации проходящего света (рис. 1). Структурные формулы наглядно отражают связь формулы со свойствами вещества, с их помощью стало возможным объяснение изомерии и предсказа­ние свойств неизвестных еще соединений.

Рис. 1. Способы соединения атомов углерода друг с другом Черточки со свободными концами при каждом атоме углерода показывают, что он может образовывать связи с атомами других элементов (обычно это водород, кислород, азот, сера)

Зная валентность углерода, можно достаточно просто изобразить положение всех недостающих водородных атомов, что позволяет со­средоточить внимание на наиболее важных связях и химических груп­пах. Такие прочные ковалентные связи углерод может образовывать и с атомами других элементов (Н, О, Р, N, S), и с углеродными (С-С связь). Внутреннее отличие органики от большинства неорга­нических соединений выражается в том, что химические связи, как правило, в органических соединениях валентные, а ионные связи — очень редки. Поэтому углерод обладает этими уникальными свойствами, среди которых еще не отмечена способность соединений углерода к полимеризации и поликонденсации, а наша жизнь называется углеродной.

6. Преобразования энергии и круговорот веществ в природе. Чем они отличаются и что между ними общего.

Биосфера представляет из себя единство живого и минеральных элементов, вовлеченных в сферу жизни. Она распределена по земной поверхности крайне неравномерно и в различных природных услови­ях принимает вид относительно независимых комплексов — биогеоценозов (или экосистем). Живая часть биогеоценоза — биоценоз - состоит из популяций организмов разных видов.

Одним из самых больших достижений науки в XX в. является выяснение механизмов превращения энергии в биологических системах Сейчас уже понятно, как солнечная энергия преобразуется в специальных пигментных структурах расте­ний в энергию химических связей, как превращаются вещества в процессах бро­жения и гликолиза (окисление углеводов без кислорода), как происходит внутри­клеточное дыхание — перенос электронов в митохондриях от коферментов к кис­лороду. В центре этих превращений в клетке находится АТФ, которая синтезирует­ся из АДФ и Н3РО4 за счет световой энергии или энергии, выделяемой при гликолизе, брожении или дыхании. При гликолизе АТФ выделяется энергия, необходимая для совершения всей работы живого организма — от создания градиентов концен­трации ионов и сокращения мышц до синтеза белка.

Биосфера улавливает лишь небольшую часть солнечной энергии, поступающей на Землю. Ультрафиолетовая часть солнечного излучения, которая составляет 30 % всей солнечной энергии, доходящей до Земли, практически полностью задерживается атмосферой. Половина поступающей энергии превращается в тепло и затем излучается в космическое пространство, 20% расходуется на испарение воды и образование облаков и только около 0,02 % используется биосферой. Зеленые расте­ния усваивают эту энергию, поглощая молекул».) хлорофилла, и про­цессе фотосинтеза преобразуют ее и запасают и форме сахарен. От этого процесса зависит нее существование биосферы.

Животные, поедая растения, а хищники — травоядных животных, освобождают для себя эту энергию, сжигая сахара и другие пита­тельные вещества при помощи кислорода. Переработка пищи в орга­низмах сопровождается выделением энергии, при этом часть ее запа­сается в форме химической энергии и используется для совершения работы. В отличие от простейших существ, у которых сжигание веществ может происходить в любой части организма, высшие животные обладают специальной системой, распределяющей по орга­низму кислород и энергоносители. В легких кровь поглощает кисло­род и выделяет углекислый газ, в кишечнике она получает пита­тельные вещества. Процессы переваривания пищи обеспечивают раз­ложение сложных компонентов пищи на более простые, которые усваиваются кишечником и поступают в кровь, при этом высво­бождается энергия. Конечные продукты обмена веществ (избыток солей, воды, чужеродные и токсичные соединения) поступают через почки в мочу и выводятся из организма.

Животные не получают необходимую им энергию непосредствен­но от Солнца. Для добывания пищи им нужна сенсорная система ее обнаружения (глаза, уши, нос или сонар — ультразвуковой лока­тор, иные органы) и мускульная система, приводящая в движение их органы (руки, ноги, плавники, крылья и т.д.). Кроме того, у растений и животных имеются регулирующие системы — железы, выделяющие гормоны, и нервная система. В организме постоянно со­вершается работа: перекачивается кровь, поглощаются питательные вещества, происходят процессы возбуждения молекул, в которых запасается энергия, выводятся отходы жизнедеятельности и вредные вещества и т. д. Для создания упорядоченных систем (высокого уров­ня генетической или нервной организации) тоже необходима энер­гия. Эффективное функционирование всех систем обеспечивается также информацией о внешнем и внутреннем окружении. Работа со­стоит в выработке сигналов, которые регулируют энергетические процессы, организуют биоструктуры, контролируют расход энергии на разные раздражители и т. п.

Удовлетворение энергетических потребностей организмов проис­ходит в рамках равновесия, которое устанавливается между различ­ными организмами данной среды обитания (экосистемы). Среди оби­тателей обычно выделяют два типа организмов: одни способны не­посредственно использовать солнечную энергию и перерабатывать


Страница: