Контроль качества геофизического исследования скважин
При настройке и регулировке автогенератора изменяют коэффициент обратной связи K, эквивалентное сопротивление нагрузки и элементы автоматического смещения. Положительная обратная связь между выходной и входной цепями усилительного прибора автогенератора должна обеспечивать надёжное самовозбуждение автогенератора и устанавливать необходимые амплитуды генерируемых колебаний (рис. 6.3).
Рис. 6.3. Схема автогенератора с трансформаторной обратной связью.
Критический коэффициент обратной связи - при котором возможна генерация колебаний, KО. КР = Ri + RЭ /(μRЭ) = 1/(SRЭ + D), где RЭ – резонансное сопротивление контура, S и D – крутизна и проницаемость усилительного контура. Увеличение или уменьшение обратной связи по сравнению с критической приводит к исчезновению автоколебаний (скачкообразному – при жёстком режиме генерации и плавному – при мягком режиме). По отклонению стрелки прибора, включённого в цепь сетки лампового генератора (или базы транзисторного), можно судить о наличии в схеме автоколебаний, а по постоянным слагающим анодного (коллекторного) и остаточного (базового) токов, колебательным напряжением на аноде и сетке и мощности генерируемых колебаний – режиме автогенератора. Плавную перестройку частоты автогенератора в заданном диапазоне осуществляют конденсатором переменной ёмкости.
Шкалу частотного диапазона градуируют частотометром на крайних частотах и в середине диапазона в режиме непрерывной генерации. Частоту автоколебаний измеряют дважды: непосредственно после прогрева и через промежуток времени, указанный в техническом описании на автогенератор. Относительная нестабильность частоты δt (%) определяется по формуле δt = [(ƒ01- ƒ0t)/ ƒ01]∙100%, где ƒ01 и ƒ0t – частота колебания генератора после прогрева и в период времени, указанный в описании автогенератора.
Всё, что происходит внутри генератора и вокруг него, в той или иной степени влияет на его частоту. Для обеспечения высокой стабильности частоты гетеродина необходимо, чтобы его колебательная система обладала максимальной фиксирующей способностью и высокой эталонностью. Под фиксирующей способностью будем понимать свойство колебательной системы гетеродина препятствовать уходам частоты при нарушении условия баланса фаз. Чем выше добротность колебательной системы, тем кручё её фазочастотная характеристика и тем выше фиксирующая способность. Отсюда вытекает необходимость применения в контурах гетеродина деталей с высокой добротностью. Требования к фиксирующей способности относятся не только к колебательной системе, но и к другим цепям, влияющим на условия баланса фаз, например к цепи обратной связи. Способность колебательной системы сохранять неизменной собственную частоту называется эталонностью. Очевидно, эталонность тем выше, чем стабильнее параметры контуров. Однако на эти параметры действуют различные дестабилизирующие факторы.
1. Температурные влияния
Изменение температуры приводят к значительному изменению частоты генератора. Основной показатель устойчивости частоты гетеродина – температурный коэффициент частоты (ТКЧ):
Для передатчиков связных радиостанций температурный коэффициент частоты колеблется в пределах от 5∙10-6 до 5∙10-5. Частота с изменением температуры вследствие тепловой инерции изменяется более медленно, чем при механических упругих деформациях. Изменение температуры приводит к изменению геометрических размеров отдельных деталей генератора, вследствие чего изменяются индуктивность и ёмкость колебательного контура, и, кроме того, изменяется диэлектрическая постоянная изоляторов, применение которых в генераторе неизбежно. Изменение диэлектрической постоянной изоляторов приводит к изменению ёмкости отдельных деталей, ёмкости монтажа и, следовательно, опять-таки к изменению ёмкости контура. При увеличении температуры размеры деталей и диэлектрическая проницаемость увеличиваются – что приводит к уменьшению собственной частоты контура.
Следует различать две причины, вызывающие изменение температуры деталей генератора: изменение температуры внешней среды и изменение температуры за счёт токов, которые обтекаются детали. Температура контурных деталей в основном определяется внешней температурой.
Прямые методы стабилизации главным образом сводятся к применению термостатов. Генератор помещается в термостат, и следовательно, его детали находятся под постоянной температурой. Более широкое применение находят косвенные методы, которые сводятся к компенсации температурных влияний. С этой целью применяют специальные компенсированные детали. Конденсаторы, или катушки индуктивности проектируются таким образом, что изменение температуры не оказывает влияния на их параметры. Например, конденсатор можно спроектировать так, что с изменением температуры будут одновременно изменяться размеры его пластин или расстояние между ними. Увеличение пластин конденсатора приводит к увеличению его ёмкости, а увеличение расстояния – к её уменьшению:
Можно так подобрать отдельные материалы при изготовлении, что в результате изменения температуры ёмкость конденсатора не будет изменяться. Следует отметить, что такую компенсацию удаётся получить в сравнительно узком диапазоне изменения температуры.
Для термокомпенсации также широко применяются конденсаторы с отрицательным температурным коэффициентом. Собственная частота контура, как указывалось, с увеличением температуры уменьшается, и следовательно, включение специального конденсатора с отрицательным температурным коэффициентом будет в некоторой степени компенсировать изменение частоты. Для термокомпенсации применяются биметаллические (композит материалов с разными коэффициентами теплового расширения) и керамические конденсаторы. В последнее время биметаллические конденсаторы почти полностью вытеснены керамическими конденсаторами. Чаще всего применяются тикондовые конденсаторы, т.е. конденсаторы, в которых диэлектриком служит тиконд. Его диэлектрическая постоянная имеет отрицательный температурный коэффициент, вследствие чего ёмкость такого конденсатора с увеличением температуры уменьшается.
При схемной термокомпенсации положительные температурные коэффициенты индуктивности и ёмкости контура компенсируют включением в контур конденсаторов небольшой ёмкости, но с большим отрицательным температурным коэффициентом. В результате общий температурный коэффициент всей ёмкости контура становится отрицательным и равным по абсолютному значению положительному температурному коэффициенту индуктивности, т.е. +αL = | -αC |.
В простой параллельной схеме термокомпенсационного контура, работающего в диапазоне частот (рис. 6.4), можно получить полную компенсацию только в одной точке диапазона.