30-ти квартирный жилой дом
Рефераты >> Строительство >> 30-ти квартирный жилой дом

коэффициент теплопроводности lА=0.76Вт/(м.0С).

3. Утеплитель – пенополистирол:

плотность g=40кг/м3,

коэффициент теплопроводности lА=0,041Вт/(м.0С).

4. Железобетонная плита:

плотность g=2500кг/м3,

коэффициент теплопроводности lА=1.92Вт/(м.0С).

Сопротивление теплопередаче:

R0=Rв+Rпар.+Rст+Rутеп+Rж/б+Rн=R0треб;

1/8.7+0,04/0,76+0,015/0,35+dутеп/0,041+0,18/1,92+1/23=2,

откуда dутеп=0,067 м = 70 мм.

4.4 Расчёт коэффициента естественной освещённости и звукоизоляции внутренних ограждающих конструкций

Расчёт освещённости помещений.

Расчёт освещённости помещений производится согласно СНиП II-4-79. Нормативное значение коэффициента естественного освещения для здания расположенного в V поясе светового климата

,

где по табл. 2 п. 1 (1); m = 0,8 – коэффициент светового климата по табл. 4 (1); с = 0,65 – коэффициент солнечности климата по табл. 5 (1). Расчёт производится для комнаты на четвёртом этаже с размерами в плане 5,52 × 3,24 м и проёмом 2 × 1,8 м.

Находим расчётный коэффициент естественной освещённости (КЕО) по формуле:

где εб – геометрический КЕО в расчётной точке при боковом освещении, учитывающий прямой свет неба, определяемый по формуле:

εб = (n1 ∙ n2) ∙ 0,01,

где n1 = 13 – число лучей проходящих через оконный проём (см рис. 5.4.1.1 );

n2 = 14 – число лучей проходящих через оконный проём (см рис. 5.4.1.1);

εб = (13 ∙ 14) ∙ 0,01 = 1,82 ;

q – коэффициент, учитывающий неравномерную яркость облачного неба МКО, q = 0,72;

εзд – геометрическое КЕО а расчётной точке при боковом освещении, учитывающий свет, отражённый от противостоящих зданий, εзд = 0;

R – коэффициент, учитывающий относительную яркость противостоящего здания; r1 – коэффициент, учитывающий повышение КЕО при боковом освещении благодаря свету, отражённому от поверхностей помещения и подстилающего слоя, прилегающего к зданию, r1 = 2,4;

τ0 – общий коэффициент светопропускания определяемый по формуле:

τ0 = τ1 ∙ τ2 ∙ τ3 ∙ τ4 ∙ τ5,

где τ1 – коэффициент светопропускания материала, определяемый, τ1 = 0,8 – для стеклопакета;

τ2 – коэффициент, учитывающий потери света в переплётах светопроёма,

τ2 = 0,8 – для одинарных переплётов;

τ3 – коэффициент, учитывающий потери света в несущих конструкциях, τ3 = 1 – при боковом освещении;

τ4 – коэффициент, учитывающий потери света в защитной сетке, устанавливаемой под фонарями, τ4 = 1;

τ5 – коэффициент, учитывающий потери света в защитной сетке, устанавливаемой под фонарями, τ5 = 1;

τ0 = 0,8 ∙ 0,8 ∙ 1 ∙ 1 ∙ 1 = 064;

Кз – коэффициент запаса, Кз = 1,2.

Так как то принятые размеры проёмов удовлетворяют расчёту освещённости.

а)

Рис. 4 К расчёту освещённости:

а) определение n1 по графику I;

б) определение n2 по графику II;

в) график естественной освещённости в рабочем помещении.

б)

1 – точка определения КЕО в рабочем помещении;

2 – нормативное значение КЕО;

3 – расчётное значение КЕО.

в)

4.4.1 Звукоизоляция

1. Требуется рассчитать индекс изоляции воздушного шума междуэтажным перекрытием.

Перекрытие состоит из монолитной несущей плиты γ = 2500 кг/м3 толщиной 160 мм, керамзитовой засыпки γ = 600 кг/м3 толщиной 120 мм, в не обжатом состоянии, цементно-песчаной стяжки γ = 1800 кг/м3 толщиной 30 мм, ковровое покрытие «ковролин» толщиной 5 мм.

Определяем поверхностные плотности элементов перекрытия:

m1 = 2500 ∙ 0,16 = 350 кг/м2;

m2 = 1800 ∙ 0,03 = 54 кг/м2.

Находим частоту собственных колебаний по формуле:

где Ед = 90 104 кгс/м2 (согласно табл.11),

hз = h0 (1 – εд) – толщина звукоизоляционного слоя в сжатом состоянии, м;

h0 – толщина звукоизоляционного слоя в не обжатом состоянии, м;

εд – относительное сжатие материала звукоизоляционного слоя под нагрузкой, принимаемое по табл. 11.

hз = 0,12 (1 – 0,09) = 0,109 м.

Индекс изоляции воздушного шума плитой толщиной 160 мм, выполненной из тяжёлого бетона кл. В15 объёмной плотностью 2500 кг/м3.

Индекс изоляции при mэ ≥ 200 кг/м3 составит:

Rw0 = 32 ∙ Lg mэ – 8 дБ = 32 ∙ Lg 350 – 8 дБ = 50,5 дБ,

где mэ = K ∙ m – эквивалентная поверхностная плотность в кг/м3;

К = 1 для ограждающей конструкции более 1800 кг/м3;

m = 2500 ∙ 0,14 = 350 кг/м3 – поверхностная плотность.

По табл. 10 находим индекс изоляции воздушного шума для данного междуэтажного перекрытия Rw = 52 дБ.

Так как толщина засыпки 120 мм то к величине Rw добавляем 1 дБ и в итоге Rw = 53 дБ, что больше нормативного значения Iw = 45 дБ (по табл. 7 п. 22).

Данная конструкция междуэтажное перекрытие удовлетворяет нормам по изоляции от воздушного шума.

2. Требуется рассчитать индекс приведённого уровня ударного шума под междуэтажным перекрытием.

По табл. 14 находим Lпw0 = 75 дБ – индекс приведённого ударного шума для сплошной плиты перекрытия (поверхностная плотность 350 кг/м3).

Находим частоту собственных колебаний

где Ед = 90 ∙ 104 кгс/м2 (согласно табл.11),

hз = 0,12 ∙ (1 – 0,09) = 0,109 м.

По табл. 12 находим индекс приведённого уровня ударного шума под междуэтажным перекрытием Lпw = 55 дБ, что меньше нормативного значения

Iу = 75 дБ (по табл. 7 п. 22).

Данная конструкция междуэтажное перекрытие удовлетворяет нормам по изоляции от ударного шума.

4.5 Инженерное оборудование

4.5.1 Отопление

Проектом предусматривается двухтрубная поквартирная система отопления с нижней разводкой подающей и обратной магистралей. От остальных вертикальных стояков делается отвод к каждой квартире к индивидуальному узлу подключения системы отопления. Трубопроводы от узла подключения к нагревательным приборам прокладываются в конструкции пола и выполняются из сшитого полиэтилена фирмы «Rehau».

Нагревательные приборы:


Страница: