Комплект технологической документации по оптической контактной литографииРефераты >> Журналистика >> Комплект технологической документации по оптической контактной литографии
Появление проколов в плёнке фоторезиста связано с некачественным или изношенным фотошаблоном, различного рода загрязнениями, плохой смачиваемостью поверхности пластины или перегревом плёнки фоторезиста при экспонировании. Как правило, при травлении проколы переходят в окисный защитный слой и являются "паразитными" областями локальной диффузии примесей, что может привести к закорачиванию р-n переходов.
Неоднородность по толщине плёнки фоторезиста приводит к несплошности контакта с фотошаблоном и трудности в подборе времени экспонирования.
Наиболее часто встречающийся дефект – образование клина травления. Клин травления возникает при вскрытии окон в защитном слое окисла и влияет на размер диффузионной области рис. 3.
Рис. 3. Схематическое изображение клина травления в защитном слое SiO2.
При наличии клина размеры диффузионной области дополнительно увеличиваются и могут быть определены из следующего выражения
dдиффуз = dокна + 2×hдиффуз×(1+k/10L),
где hдиффуз – глубина диффузии. При толщине окисла 0, 7-0, 8 мкм; k = 1-2 мкм для негативных фоторезистов и 0, 3-0, 4 мкм для позитивных. Причины появления клина связаны с неправильно подобранной экспозицией, плохим контактом между пластиной и фотошаблоном, недостаточной оптической плотностью непрозрачных участков фотошаблона, неперпендикулярным падением света на фотошаблон, некачественным проявлением фоторезиста.
Дефекты, связанные с неровностью края плёнки фоторезиста появляются при неправильных режимах проявления и экспозиции, при наличии в фоторезисте инородных частиц размером 0, 3-0, 5 мкм, при некачественных фотошаблонах.
Минимальный геометрический размер элемента зависит от длины волны излучения λ, расстояния между фотошаблоном и пластиной z и толщины фоторезиста h, которые связаны между собой соотношением bmin=3/2×[λ×(z+h/2)]1/2. Поэтому при плохом контакте пластины и фотошаблона, т.е. при зазоре, возникает дифракция, которая и искажает размеры экспонируемой области. К искажению геометрических размеров рисунка могут привести также неправильно подобранные режимы экспонирования и проявления.
Интерференция проходящего через слой фоторезиста светового потока и его отражения от границы с подложкой, а также рассеяние света, создают нерезкую зону по краю изображения, которая после проявления даёт "ореол", что ухудшает контрастность и изменяет геометрические размеры рисунка. Для ослабления этого эффекта применяют антиотражающие покрытия, например, плёнки окиси хрома, которые осаждают на поверхность пластины перед нанесением фоторезиста.
В итоге контактная фотолитография при решении задачи повышения разрешающей способности и достижения предельной точности сталкивается с существенными ограничениями:
- неизбежность механических повреждений фотошаблона и подложки при контакте;
- вдавливание пылинок в фоторезист и прилипание его к шаблону при контакте;
- любые непрозрачные для УФ - излучения частицы между пластиной и фотошаблоном являются причинами появления дефектов;
- поскольку плотный контакт между пластиной и фотошаблоном невозможен, воздушные зазоры приводят к появлению дифракционных эффектов и увеличению размеров изображения;
- точность совмещения при контактной фотолитографии существенно снижается из-за проблем фиксации перехода от положения "зазор" в положение "контакт".
Бесконтактная фотолитография.
Бесконтактная фотолитография реализуется в двух способах: фотолитография на микрозазоре и проекционная фотолитография.
Фотолитография на микрозазоре (фотошаблон и пластина с нанесённым фоторезистом отстоят друг от друга на расстоянии 10-30 мкм) использует так называемый множественный источник излучения, когда УФ - лучи падают наклонно под одинаковыми углами к оптической оси системы экспонирования. Наклон лучей устраняет или сводит к минимуму дифракционные явления за прозрачными участками фотошаблона, улучшает равномерность облучения. В результате достигается высокая разрешающая способность, например, при толщине плёнки фоторезиста 1, 8 мкм можно получить линейный размер 2 мкм при зазоре 10 мкм и менее 3, 5 мкм при зазоре 30 мкм. Бесконтактная система экспонирования позволяет снизить время экспонирования до 2-3 с, увеличить срок службы фотошаблонов.
Проекционная фотолитография позволяет проецировать изображение фотошаблона на подложку и осуществлять совмещение при наблюдении рисунка фотошаблона и пластины в одной плоскости. Это исключает проблему глубины резкости и точной установки зазора между пластиной и фотошаблоном. При проекционной фотолитографии уменьшается длительность процесса совмещения и увеличивается точность совмещения. Разрешающая способность проекционной фотолитографии выше, так как исключается дифракция излучения в зазоре. Метод хорошо поддаётся автоматизации.
Рентгеновская литография.
Основу метода рентгеновской литографии составляет взаимодействие рентгеновского излучения с рентгенорезистами, приводящее к изменению их свойств в сторону уменьшения или увеличения стойкости к проявителям.
Рентгеновское излучение получают путём бомбардировки мишени потоком ускоренных электронов. Рентгеновское излучение бывает "белое", как результат взаимодействия потока электронов с электронами внешних оболочек атомов материала мишени, и "характеристическое" взаимодействие пучка электронов с внутренними оболочками атома и переход их на внешние или удаление из атома. Эти переходы сопровождаются рентгеновским излучением. Так как кинетическая энергия электронов внутренних оболочек атомов мишени существенно больше внешних, то длина волны характеристического излучения много меньше белого. Для рентгеновской литографии используют рентгеновское излучение с длиной волны 0, 4-0, 8 нм, например, PdLa(λ=0, 437 нм), MoLa(λ=0, 541 нм), AlKa(λ=0, 834 нм).
Рентгенорезисты, также как и Фоторезисты, делятся на позитивные и негативные. Под действием рентгеновского излучения первые разрушаются, а вторые сшивают свои молекулярные структуры. Рентгеновское излучение выбивает электроны с внутренних оболочек атомов рентгенорезиста, и освободившиеся электроны взаимодействуют с полимерной основой рентгенорезиста. Позитивные и негативные Рентгенорезисты имеют одинаковую разрешающую способность. Основные требования к рентгенорезистам – это чувствительность к излучению, контрастность, высокая разрешающая способность, устойчивость при травлении. Высокой стабильностью и стойкостью к воздействию кислот обладает позитивный рентгенорезист на основе полиметилметакрилата, который и получил наибольшее применение.
В качестве шаблонов в рентгеновской литографии используют тонкие кремниевые структуры, прозрачные для рентгеновского излучения, с рисунком покрытия из тяжёлых металлов, например, золота, которое не пропускает рентгеновские лучи.
На рис. 4 представлена упрощённая схема установки рентгеновской литографии. Порядок технологических операций рентгеновской литографии тот же, что и в оптической литографии. Рентгенорезист также наносят методом центрифугирования, однако толщина его меньше, чем фоторезиста, и составляет 0, 1-0, 5 мкм. Проецируют изображение фотошаблона на пластину с зазором 3-10 мкм.