Разработка технологического процесса изготовления детали с использованием станков с ЧПУ
Рефераты >> Технология >> Разработка технологического процесса изготовления детали с использованием станков с ЧПУ

Если к какому-нибудь телу приложить силу, то в нем произойдут деформации, т.е. некоторое смещение одних частиц по отношению к другим. В результате может измениться как объем, так и форма тела. Таким образом, твердые тела обладают не только объемной упругостью, но и упругостью формы. Поэтому в твердых телах наряду с нормальными могут возникать и касательные напряжения сдвига, а вместе с ними и поперечные волны.

Скорость распространения продольных волн в стальном стержне равна 5170 м/с. В более толстых стержнях сказывается эффект поперечного сжатия — увеличение инерции в результате радиальных колебаний, что вызывает уменьшение скорости распространения продольных волн.

Распространение ультразвуковых волн в твердых телах сопровождается потерями энергии на внутреннее трение, теплопроводность и упругий гистерезис. Потери энергии зависят от физико-механических свойств и структуры материала.

Когда ультразвуковая волна попадает на границу раздела между двумя средами, то часть звуковой энергии из первой переходит во вторую, а часть энергии отображается обратно.

При этом распределение энергии между перешедшей в другую среду и отраженной от нее зависит от соотношения акустических сопротивлений этих сред.

17.2. Кинематика ультразвуковой обработки

Для любого процесса резания, в том числе и ультразвукового сопровождающегося скалыванием мельчайшей стружки, необходимо различать два движения: главное - движение резания и вспомогательное - движение подачи. При размерной ультразвуковой обработке главным движением надо считать продольные колебания инструмента с ультразвуковой частотой, которые являются источником энергии абразивных зерен. Рабочий ход осуществляется при перемещении инструмента вниз, холостой ход - при перемещении инструмента вверх.

Время одного периода:

T = Tр.х. + Tх.х.,

где

Tр.х. — время рабочего хода;

Tх.х. — время холостого хода.

Время рабочего хода:

Tр.х. = L / vр.х

Время холостого хода

Tх.х. = L / vх.х

где

L — длина рабочего хода инструмента, мм;

vр.х — средняя скорость рабочего хода;

vх.х — средняя скорость холостого хода инструмента.

Для применяемых диапазонов частот и амплитуд колебаний инструмента скорость главного движения при размерной ультразвуковой обработке находится в достаточно широких пределах 0.6 ¸ 6 м/с. Максимальная скорость колебаний в 1.5 раза больше чем средняя.

Вспомогательные движения — движения подачи при ультразвуковой обработке — могут быть различными:

продольная подача — sпр ,

поперечная подача — sпоп ,

круговая подача — sкр ,

в зависимости от вида движения заготовки или инструмента. В зависимости от вида подачи или комбинации подач, а также профиля в продольном и поперечном сечении инструмента можно осуществлять различные операции ультразвуковой обработки.

Наибольшее промышленное применение получили процессы ультразвукового сверления, прошивания и резания, имеющие предельно простую кинематику — главное колебательное движение и продольную подачу.

17.3. Методы и технологические характеристики ультразвуковой

размерной обработки материалов

Большое распространение получил метод размерной ультразвуковой обработки твердых и хрупких материалов несвязанным абразивом, зерна которого получают энергию от инструмента, совершающего колебательные движения. Разрушение обрабатываемого материала происходит главным образом за счет ударного действия инструмента на частицы абразива. Колеблющийся инструмент, ударяя по абразивным зернам, сообщает им энергию. Абразивные зерна, ударяя по заготовке, откалывают небольшие частицы материала заготовки. В качестве абразива обычно применяют карбид бора, в качестве жидкость - воду. Относительно высокая производительность ультразвуковой обработки, несмотря на ничтожно малую производительность каждого единичного удара, обусловлена большой частотой колебания инструмента и большим числом зерен, одновременно движущихся с ускорением ( 20000-100000 зерен на см2 ). Съем материала происходит в основном с площадок, расположенных перпендикулярно к направлению колебания инструмента. Ультразвуковой способ обработки представляет собой сложный комплекс процессов, однако в основном съем материала происходит в следствие прямого удара зерен абразива об обрабатываемую деталь.

Производительность размерной ультразвуковой обработки можно оценить величиной подачи инструмента sпр, объемным и удельным съемом материала.

Средняя подача инструмента при обработке неглубоких отверстий без вывода инструмента для заполнения полости абразивом:

sпр1 = h1 / t1 ,

где

h1 — глубина обработки полости, мм;

t1 — время обработки, мин.

Средняя подача инструмента при обработке глубоких отверстий с выводом инструмента для заполнения полости абразивом:

sпр2 = ,

где

n — число выводов инструмента;

t2 — время вывода инструмента.

Средний минутный съем обрабатываемого материала

Qv = sпр × F ,

где

F — площадь поперечного сечения инструмента.

При обработке глухих отверстий и полостей сплошным инструментом наиболее целесообразен критерий Qv, а при сквозной обработке производительность удобнее характеризовать величиной минутной подачи sпр. Величина подачи sпр численно равна удельной производительности ультразвуковой обработки. Под удельной производительностью понимают объем обрабатываемого материала, снятый единицей рабочей поверхности инструмента в единицу времени, т.е. отношение Qv к F. Производительность ультразвуковой обработки зависит от следующих основных факторов: физико-механических свойств обрабатываемого материала, амплитуды и частоты колебаний, статической нагрузки между инструментом и заготовкой, вида абразива, концентрации суспензии и способа ее подачи в зону обработки, площади инструмента и его износа, материала инструмента.

Точность ультразвуковой обработки.Под термином "точность ультразвуковой обработки" сквозных отверстий следует понимать стабильность зазора между контуром отверстия и инструментом. Этот зазор неизбежно возникает при ультразвуковом долблении, и если бы он был абсолютно стабилен, то при соответственно заниженных размерах инструмента можно было бы получить предельно точное отверстие. Колебания этого зазора создают поле допуска, определяющее точность обработки.

Кроме точности размеров контура, сквозное отверстие обработанное ультразвуковым методом, характеризуется конусностью полученного отверстия. Эта конусность возникает при ультразвуковом долблении и может изменяться в очень широких пределах.

Точность изготовления сквозных отверстий. Точность изготовления зависит главным образом от однородности применяемого абразива и наличия поперечных колебаний инструмента. Однородность абразива определяется соответствием размеров всех его зерен указанной в паспорте зернистости.

Утверждение, что в основном от качества абразива зависит точность обработки, предполагает выполнение с необходимой точностью как крепления и подачи инструмента, так и самого инструмента.


Страница: