Статистический анализ и оптимизация САР. Привод сопла ракеты носителя
Рефераты >> Технология >> Статистический анализ и оптимизация САР. Привод сопла ракеты носителя

,

где квадрат модуля амплитудной характеристики некоей фиктивной минимально-фазовой динамической системы, которую в дальнейшем мы будем называть формирующем фильтром соответствующим спектральной плотности некоего случайного процесса.

4 Априорный статистический анализ

Под априорным статистическим анализом (или анализом точности) понимается определение статистических характеристик (математических ожиданий, дисперсий, спектральных плотностей, распределение вероятностей и т. п.) координат управляемого динамического объекта по известному его дифференциальному уравнению движения и статистическим характеристикам случайных факторов.

Пусть линеаризованные уравнения возмущенного движения управляемого объекта имеют вид:

где x(t)-вектор состояния (фазовый вектор), размерности nx1,

A(t)-матрица коэффициентов, размерности nxn.

B(t)- матрица коэффициентов ,белых шумов, размерности nxm.

n-вектор белых шумов, размерности mx1.

Тогда дифференциальные уравнения для вектора математических ожиданий и матрицы ковариаций имеют следующий вид:

Размерность матрицы ковариации nxn.

N-диагональная матрица интенсивностей белых шумов.

Дифференциальные уравнения (1)-(3) решаются одним из численных методов интегрирования. Таким образом, мы определяем вектор состояния и статистические характеристики системы в любой момент времени. Перед началом интегрирования, должны быть известны априорные значения вектора состояния, вектора математических ожиданий и матрицы ковариаций в начальный момент времени.

5 Статистическая линеаризация

Легко видеть, что для решения уравнений из пункта 2.4 необходимы линейные системы уравнений. Однако на практике системы управления могут содержать (и чаще всего содержат) нелинейные элементы, и уравнение для вектора состояний принимает вид:

В этом случае применяется метод статистической линеаризации, когда нелинейный элемент заменяется линейным в некотором смысле эквивалентным.

Пусть нелинейный элемент имеет следующий вид:

Введем

линейный элемент следующего вида:

,

где

Необходимо чтобы величина на выходе линейного элемента была эквивалентна, в некотором смысле, величине на выходе нелинейного элемента.

Существуют два подхода:

1. Критерий вида:

M{z}=M{h}

D{z}=D{h}

Формулы для коэффициентов статистической линеаризации:

2. Второй способ заключается в выполнении критерия вида:

M{z}=M{h}

D{h-z}®min

Коэффициент b вычисляется по формуле

2. Реализация

Для решения поставленной задачи было написано программное обеспечение с помощью среды Microsoft Visual C++ 4.0 для матричных операций, численных методов интегрирования. Основная задача решается в двух программах, для расчета нелинейной системы и линеаризованной.

1 Система дифференциальных уравнений

Для того чтобы ввести в систему случайные возмущения с требуемыми корреляционными функциями воспользуемся понятием формирующего фильтра, динамического звена на вход которого поступает белый шум, а на выходе процесс с требуемыми параметрами.

Итак, спектральная плотность требуемого процесса имеет вид:

Согласно формуле передаточная функция формирующего фильтра имеет вид:


Страница: