Электропривод и автоматизация главного привода специального вальцетокарного станкаРефераты >> Технология >> Электропривод и автоматизация главного привода специального вальцетокарного станка
Постоянную времени тиристорного преобразователя принимаем равной 0.007 с — время, достаточное для восстановления запирающих свойств тиристоров после прохождения полуволны напряжения через 0.
Определим активное сопротивление фазы трансформатора:
Ом (4.7)
где В (4.8)
Тогда полное сопротивление фазы трансформатора составит:
Ом, (4.9)
а индуктивное сопротивление фазы трансформатора составит:
Ом (4.10)
Тогда индуктивность фазы трансформатора составит:
Гн (4.11)
Определим индуктивность якоря двигателя по эмпирической формуле:
Гн (4.12)
где p = 2 — число пар полюсов двигателя.
Определим суммарную индуктивность якорной цепи двигателя:
L? = Lср + 2Lтр + Lяд = 0.75 + 2 * 0.02892 + 2 = 2.808 мГн (4.13)
Определим суммарное активное сопротивление якорной цепи двигателя:
R? = Rяд + rср + a * rд + b * rтр + c * rур + rк (4.14)
где rср — активное сопротивление сглаживающего реактора;
rд — динамическое сопротивление тиристоров;
rур — активное сопротивление уравнительного реактора;
rк — коммутационное сопротивление;
a = 2, b = 2, c = 1 — коэффициенты, зависящие от схемы
выпрямления напряжения.
Ом (4.15)
Ом (4.16)
rд = 0.45 * 10-3 Ом — по паспортным данным (4.17)
Подставив (4.15) — (4.17) в (4.14), получим:
R? = (21.5 + 0.062 + 2 * 0.45 + 2 * 0.186 + 1 * 0.62 + 8.68) * * 10-3 = 31.576 * 10-3 Ом (4.18)
Определим граничный угол отпирания тиристоров:
(4.19)
где Се’ — коэффициент пропорциональности между скоростью и ЭДС двигателя.
(4.20)
Тогда, подставив (4.20) в (4.19), получим граничный угол отпирания тиристоров равным:
(4.21)
Определим постоянные времени полученной системы.
Электромагнитная постоянная якорной цепи двигателя:
с (4.22)
Электромагнитная постоянная якоря двигателя:
с (4.23)
Электромеханическая постоянная системы:
с (4.24)
где J? = Kj * Jäâ = 2.5 * 8.25 = 20.625 кг*м2 (4.25)
Kj — коэффициент динамичности системы электропривода, показывающий во сколько раз система электропривода инерционней, чем двигатель. Для тяжелых токарных станков 2 ? Kj ? 3.
Результаты вычислений сведем в таблицу.
Таблица 4.1 — Динамические параметры системы
Наименование |
Обозначение |
Величина |
Электромагнитная постоянная времени системы |
Тэ |
0.0899 с |
Электромагнитная постоянная времени якорной цепи двигателя |
Тя |
0.093 с |
Электромеханическая постоянная времени системы |
Тм |
0.0606 с |
Постоянная времени тиристорного преобразователя |
Т? |
0.007 с |
Суммарное сопротивления якорной цепи электродвигателя |
R? |
0.031576 Ом |
Суммарный момент инерции системы электропривода |
J? |
20.625 кг*м2 |
Коэффициент усиления тиристорного преобразователя |
Ктп |
67.17 |
Максимальный угол отпирания тиристоров |
?max |
81? 37’ |
5. СИНТЕЗ СИСТЕМЫ АВТОМАТИЧЕСКОГО РЕГУЛИРОВАНИЯ
Для обеспечения требуемых статических и динамических параметров определим требуемую структуру системы.
Поскольку необходимо регулировать мощность резания, то система должна иметь контур мощности.
Так как требуется хорошая динамика, то необходимы контура тока и скорости.
Поскольку требований к статической ошибке по скорости не предъявляется, то можно использовать пропорциональный (П) регулятор скорости. Регулятор тока в любом случае — пропорционально—интегральный (ПИ).
Поскольку основным требованием к мощности является стабилизация ее на заданном уровне с точностью 5%, то необходимо применить пропорционально—интегрально—дифференциальный (ПИД) —регулятор мощности, если при этом интегральная и дифференциальная части регулятора будут значимы.
Исходя из вышеизложенного, можно провести синтез соответствующей системы регулирования — трехконтурной, с внутренними контурами тока и скорости двигателя и с внешним контуром мощности резания.
5.1. Расчет контура тока
Структурная схема контура тока приведена на Рис. 5.1.
Регулятор тока организован по пропорционально-интегральному (ПИ) закону управления с настройкой на модульный оптимум. Регулятор для обеспечения требуемых динамических параметров должен компенсировать электромагнитную постоянную времени системы Тэ, а также малую постоянную времени контура тока Тот.
Тогда передаточная функция регулятора тока будет иметь вид:
(5.1)
где ?рт — постоянная времени токового контура;
(5.2)
Крт — пропорциональная часть регулятора тока, определяется по формуле:
(5.3)
где Тот — малая постоянная времени токового контура;
Тот = 2 * Т? = 2 * 0.007 = 0.014 с (5.4)
Кот — коэффициент обратной связи по току, определяется по формуле:
Кот = Кдт * Кш = 60.95 * 1.875*10-4 = 1.143 * 10-2 (5.5)
где Кдт — коэффициент усиления датчика тока;
(5.6)