Проект лабораторного стенда на базе частотного электропривода OmronРефераты >> Технология >> Проект лабораторного стенда на базе частотного электропривода Omron
В структуре электропривода ЭД рассматривается как электромеханический преобразователь ЭМП в виде идеализированного двигателя. Его ротор не обладает массой и механической энергией, не имеет механических потерь энергии и жестко связан с реальным физическим ротором, относящимся к механической части ЭП. Такой ЭД может быть представлен электромеханическим многополюсником, содержащим n пар электрических выводов по числу n обмоток, и одну пару механических выводов (смотри рисунок 9). На механических выводах в результате электромеханического преобразования (ЭМТ) энергии при скорости w развивается электромагнитный момент M. Момент M является выходной величиной ЭМП и входной для механической части электропривода. Скорость w определяется условиями движения механической части, но для ЭМП может рассматриваться как независимая переменная. Механические переменные M и w связывают ЭМП с механической частью в единую взаимосвязанную систему. Все процессы в ЭД описываются системой уравнений электрического равновесия (число уравнений равно числу обмоток) и уравнением электромеханического преобразования энергии. Для этого в теории ЭП используют двухфазную модель обобщенного ЭП (смотри рисунок 8), к которой приводятся абсолютно все виды и типы электрических машин:
α, β – неподвижные оси статора; d, q – вращающиеся оси ротора; φ – угол поворота ротора; - угловая скорость ротора;
Рисунок 8 – Модель обобщенного ЭМП.
Уравнение электрического равновесия i- обмотки:
где - потокосцепление i-ой обмотки;
i=1a,…2q; j=1a,…2q, Ri – активное сопротивление обмотки, Li,j – собственные и взаимные индуктивности обмоток. Величина взаимных индуктивностей зависит от угла j поворота ротора и от пространственного сдвига обмоток, т.е. является функцией скорости (и времени). Именно поэтому невозможно получить cos φ = 1.
Синтез алгоритмов и систем векторного управления АД базируется на анализе двухфазной d – q модели АД (d и q – ортогональная система координат ротора).
Рисунок 9 – Схема векторного управления
Схема векторного управления состоит из трех основных функциональных частей:
БРП – блок регуляторов переменных;
БВП – блок вычисления переменных;
БЗП – блок задания переменных;
На вход БРП поступают задающие сигналы скорости и потока, и сигналы обратной связи (с выхода БВП) – ориентированные по полю значения составляющих тока статора, потокосцепления ротора, и скорости. БРП содержит набор регуляторов потока, момента, тока, на выходе которых формируются также ориентированные по полю сигналы задания составляющих тока статора.
БЗП осуществляет фазовые и координатные преобразования задающих d – q переменных в систему трехфазных сигналов управления ШИМ АИН. Блок БВП вычисляет текущие значения амплитудных и фазовых параметров d – q переменных АД, осуществляя фазовые и координатные преобразования реальных трёхфазных сигналов токов и напряжений АД, поступающих с выходов соответствующих датчиков.
Координатные преобразования, осуществляемые блоком БВП, заключаются в переходе от реальных координат трёхфазной системы статора АД с осями d,q (преобразование 3 → 2). Блок БЗП осуществляет обратные координатные преобразования (2 → 3), от d-q к a,b,c.
Фазовые преобразования в этих блоках обеспечивают привязку фазовых параметров переменных в двух системах координат.
На надежность, стоимость и качество характеристик ЭП влияют число измеряемых параметров и точность измерений. Для векторного управления АД надо измерять хотя бы две из четырех, доступных к измерению переменных:
1. Токи статора АД;
2. Напряжения на зажимах АД;
3. Угловая скорость ротора АД;
4. Угловое положение ротора АД;
Векторное управление позволяет практически в любой момент времени, при любом положении ротора относительно статора, при любой угловой скорости и нагрузке на машину, получить максимальный cos φ АД. Это, в свою очередь, ощутимо повышает К.П.Д и момент эл. машины, который, в данном случае, практически не зависит от угловой скорости двигателя.
1.5 Достоинства и недостатки АИН
1.5.1 Достоинства структуры ЭП на основе АИН:
а) Практически неограниченный диапазон регулирования частоты и скорости;
б) Некритичность к мощности (в пределах допустимой) и количеству подключенных АД
в) Возможность работать в режиме холостого хода при отключении АД.
г) Высокое, близкое к “1” значение коэффициента мощности сети (cos φ) во всех режимах работы;
д) Синусоидальность выходного тока, плавное, без скачков, вращение АД на скоростях, близких к нулевым;
ж) Высокие динамические показатели ЭП, обусловленные высоким быстродействием ШИМ управления;
1.5.2 Недостатки структуры ЭП на основе АИН:
а) Достаточно высокий уровень радиопомех, могущих вызвать сбои ЭВМ и контроллеров (силовые кабели необходимо прокладывать в заземленных трубах).
б) Неэкономичность прокладки длинных питающих кабельных линий между АИН и двигателем ввиду значительных токов ВЧ – утечки на ноль (падает момент);
в) Необходимость установки специальных фильтров как на входе, так и на выходе инвертора. Применение обычных фильтров недопустимо.
г) Недопустимость применения любой коммутирующей аппаратуры на выходе АИН.
д) Неустранимый ток высокочастотной утечки на ноль.
1.6 Обоснование выбора основных составляющих комплексного стенда
1.6.1 Основой стенда №6 является частотный преобразователь “Omron 3G3EV”. При выборе данного устройства мы руководствовались, прежде всего, самым широким набором сервисных функций из всех фирм, предлагающих автономные инверторы напряжения. Кроме того, серия 3G3EV рассчитана на работу с двигателями мощностью от 100 Вт до 1,5 кВт, поэтому стоимость входящих в нее инверторов относительно невысока.
Наше внимание привлек инвертор, относящийся к верхнему пределу линейки мощностей данной серии, так как в колледже на момент выбора инвертора уже имелась очень наглядная нагрузка – центробежная воздуходувка. Мощность её двигателя составляла 1,5 кВт, что как раз соответствовало номинальной нагрузке на инвертор. Применение воздуходувки интересно и со стороны будущего совершенствования стенда – для построения замкнутой системы управления необходимо лишь добавить термопару вместе с нагревательным элементом, поместив их в воздушном потоке (контроллер “Ремиконт Р - 122” уже установлен на стенде №7).
Автономные инверторы напряжения фирмы “Omron” позволяют осуществлять дистанционное управление через дискретные и аналоговые входы, что широко используется на современном производстве. Частотный электропривод наиболее эффективно работает в системе “инвертор - контроллер”, что объясняется широкими возможностями управления (задание частоты вращения двигателя как в аналоговом, так и в цифровом виде), возможностью удаленного контроля за режимом работы (ход/останов).