Классификация систем массового обслуживания и их основные элементРефераты >> Экономическая теория >> Классификация систем массового обслуживания и их основные элемент
К этим уравнениям добавляется нормирующее условие
(9)
Для решения полученной бесконечной алгебраической системы введём обозначения: при 1
при
Система уравнений (6)-(8) в этих обозначениях принимает такой вид:
при
Отсюда заключаем, что при всех
т.е. при 1
(10)
и при
(11)
Введём для удобства записи обозначение
.
Уравнение (10) позволяет заключить, что при 1
(12)
При из (11) находим, что
и, следовательно, при
(13)
Остаётся найти . Для этого в (9) подставляем выражения из (12) и (13). В результате
так как бесконечная сумма, стоящая в квадратных скобках, сходится только при условии, что
(14)
то при этом предположении находим равенство
(15)
Если условие (14) не выполнено, т.е. если , то ряд, стоящий в квадратной скобке уравнения для определения , расходится и, значит, должно быть равно 0. Но при этом, как следует из (12) и (13), при всех оказывается .
Методы теории цепей Маркова позволяют заключить, что при с течением времени очередь стремится к по вероятности.
Поясним полученный результат на нескольких практических примерах, которые покажут, что обычные в практической деятельности подсчеты, основанные на чисто арифметических соображениях, при которых не учитывается специфика случайных колебаний в поступлении требований на обслуживание, приводят к серьезным просчетам.
Пусть врач успевает удовлетворительно осмотреть больного и заполнить его историю болезни в среднем за 15 минут. Планирующие органы из этого обычно делают вывод: за четырёхчасовый рабочий день врач должен принимать 16 человек. Однако больные приходят в случайные моменты времени. В результате при таком подсчете пропускной способности врача к нему неизбежно скапливается очередь, так как при проведенном подсчете принимается равным 1. Те же заключения относятся и к расчету числа коек в больницах, числа работающих касс в магазинах, числа официантов в ресторанах и т. д. К сожалению, некоторые экономисты совершают такую же ошибку и при расчете погрузочных средств в карьерах, числе приемщиков на элеваторах, числе причалов в морских портах и пр.
Во всем дальнейшем мы предполагаем, что условие (14) выполнено.
5. Некоторые подготовительные результаты.
Для задачи с ожиданием основной характеристикой качества обслуживания является длительность ожидания требованием начала обслуживания. Длительность ожидания представляет собой случайную величину, которую обозначим буквой . Рассмотрим сейчас только задачу определения распределения вероятностей длительности ожидания в уже установившемся процессе обслуживания. Обозначим далее через вероятность того, что длительность ожидания превзойдёт t, и через вероятность неравенства, указанного в скобке при условии, что в момент поступления требования, для которого подсчитывается длительность ожидания, в очереди уже находится k требований. В силу формулы полной вероятности имеем равенство
(16)
Прежде чем преобразовать эту формулу к виду, удобному для использования, приготовим некоторые необходимые для дальнейшего сведения. Прежде всего для случаев m=1 и m=2 найдем простые формулы для . Несложные преобразования приводят к таким равенствам: при m=1
=1-, (17)
а при m=2
(18)
Вычислим теперь вероятность того, что все приборы будут заняты в какой-то наудачу взятый момент. Очевидно, что эта вероятность равна
(19)
Эта формула для m=1 принимает особенно простой вид:
(20)
при m=2
(21)
В формуле (19) может принимать любое значение от 0 до m (исключительно). Так что в формуле (20) < 1, а в (21) <2.
6. Определение функции распределения длительности ожидания.
Если в момент поступления требования в очереди уже находились k-m требований, то, поскольку обслуживание происходит в порядке очередности, вновь поступившее требование должно ожидать, когда будут обслужены k-m+1 требований. Пусть означает вероятность того, что за промежуток времени длительности t после поступления интересующего требования закончилось обслуживание ровно s требований. Ясно, что при имеет место равенство