Классификация систем массового обслуживания и их основные элементРефераты >> Экономическая теория >> Классификация систем массового обслуживания и их основные элемент
3) Свойством ординарности, которое выражает практическую невозможность одновременного поступления двух или более требований (вероятность такого события неизмеримо мала по отношению к рассматриваемому промежутку времени, когда последний устремляют к нулю).
При простейшем потоке требований распределение требований, поступающих в систему подчиняются закону распределения Пуассона:
вероятность того, что в обслуживающую систему за время t поступит именно k требований:
где. - среднее число требований, поступивших на обслуживание в единицу времени.
На практике условия простейшего потока не всегда строго выполняются. Часто имеет место нестационарность процесса (в различные часы дня и различные дни месяца поток требований может меняться, он может быть интенсивнее утром или в последние дни месяца). Существует также наличие последействия, когда количество требований на отпуск товаров в конце месяца зависит от их удовлетворения в начале месяца. Наблюдается и явление неоднородности, когда несколько клиентов одновременно пребывают на склад за материалами. Однако в целом пуассоновский закон распределения с достаточно высоким приближением отражает многие процессы массового обслуживания. Почему такое предположение в ряде важных случаев оказывается верным, дает ответ общая теорема А.Я.Хинчина, которая представляет исключительную теоретическую и практическую ценность. Эта теорема имеет место в случае, когда входящий поток можно представить в виде суммы большого числа независимых потоков, ни один из которых не является сравнимым по интенсивности со всем суммарным потоком. Приведем “не строгую” формулировку этой теоремы (полная формулировка и доказательство приведены в).
Теорема (А.Я.Хинчин) Если входящий поток представляет собой сумму большого числа независимых между собой стационарных и ординарных потоков, каждый из которых вносит малый вклад в общую сумму, то при одном дополнительном условии аналитического характера (которое обычно выполняется на практике) поток близок к простейшему.
Применение этой теоремы на практике можно продемонстрировать, на следующем примере: поток судов дальнего плавания в данный грузовой порт, связанный со многими портами мира, можно считать близким к простейшему. Это дает нам право считать поток прибытия судов в порт распределенным согласно процесса Пуассона.
Кроме тогî, наличие пуассоновского потока требований можно определить статистической обработкой данных о поступлении требований на обслуживание. Одним из признаков закона распределения Пуассона является равенство математического ожидания случайной величины и дисперсии этой же величины, т.е.
Одной из важнейших характеристик обслуживающих устройств, которая определяет пропускную способность всей системы, является время обслуживания.
Время обслуживания одного требования ()- случайная величина, которая может изменятся в большом диапазоне. Она зависит от стабильности работы самих обслуживающих устройств, так и от различных параметров, поступающих в систему, требований (к примеру, различной грузоподъемности транспортных средств, поступающих под погрузку или выгрузку) .
Случайная величина полностью характеризуется законом распределения, который определяется на основе статистических испытаний.
На практике чаще всего принимают гипотезу о показательном законе распределения времени обслуживания.
Показательный закон распределения времени обслуживания имеет место тогда, когда плотность распределения резко убывает с возрастанием времени t. Например, когда основная масса требований обслуживается быстро, а продолжительное обслуживание встречается редко. Наличие показательного закона распределения времени обслуживания устанавливается на основе статистических наблюдений.
При показательном законе распределения времени обслуживания вероятность события, что время обслуживания продлиться не более чем t, равна:
где v - интенсивность обслуживания одного требования одним обслуживающим устройством, которая определяется из соотношения:
, (1)
где - среднее время обслуживания одного требования одним обслуживающим устройством.
Следует заметить, что если закон распределения времени обслуживания показательный, то при наличии нескольких обслуживающих устройств одинаковой мощности закон распределения времени обслуживания несколькими устройствами будет также показательным:
где n - количество обслуживающих устройств.
Важным параметром СМО является коэффициент загрузки , который определяется как отношение интенсивности поступления требований к интенсивности обслуживания v.
(2)
где a - коэффициент загрузки; - интенсивность поступления требований в систему; v - интенсивность обслуживания одного требования одним обслуживающим устройством.
Из (1) и (2) получаем, что
Учитывая, что - интенсивность поступления требований в систему
в единицу времени, произведение показывает количество требований, поступающих в систему обслуживания за среднее время обслуживания одного требования одним устройством.
Для СМО с ожиданием количество обслуживаемых устройств п должно быть строго больше коэффициента загрузки (требование установившегося или стационарного режима работы СМО) :
.
В противном случае число поступающих требований будет больше суммарной производительности всех обслуживающих устройств, и очередь будет неограниченно расти.
Для СМО с отказами и смешанного типа это условие может быть ослаблено, для эффективной работы этих типов СМО достаточно потребовать, чтобы минимальное количество обслуживаемых устройств n было не меньше коэффициента загрузки :