Записка к расчетамРефераты >> Архитектура >> Записка к расчетам
255.75 кН – удовлетворяется. 3.9 Построение эпюры арматуры.
Эпюру арматуры строим в такой последовательности:
Рассмотрим сечение I пролета арматуры: 2 ø12 А-III+2ø16 A-III с Аs=6,28*10-4 m2.
Определяем момент, воспринимаемый сечением с этой арматурой, для чего рассчитываем необходимые параметры:
h0=h-a=0.5-0.06=0.44 m;
μ=As/b*h0=6.28*10-4/0.2*0.44=0.0071;
ζ=μ*Rs/Rb=0.0071*365*106/0.9*11.5*106=0.25;
η=1-0.5*0.25=0.875;
Ms=As*Rs*h0* η=6.28*10-4*365*106*0.875*0.44=88.25 кН*м.
Арматура 2ø12 А-III обрывается в пролете, а стержни 2ø16 А-III с As=4.02*10-4 m2 доводятся до опор.
Определяем момент, воспринимаемый сечением с этой арматурой:
h0=h-a=0.5-0.03=0.47 m;
μ=As/b*h0=4.02*10-4/0.2*0.47=0.0043;
ζ=μ*Rs/Rb=0.0043*365*106/0.9*11.5*106=0.152;
η=1-0.5*0.152=0.924;
Ms=As*Rs*h0* η=4.02*10-4*365*106*0.924*0.47=63.72 кН*м.
Графически определяем точки теоретического обрыва двух стержней ø12 А – III. Поперечная сила в первом сечении Q1=30 кН, во II сечении Q2=40 кН.
Интенсивность поперечного армирования в I сечении при шаге хомутов S=0.15 m равна :
Qsw=Rsw-Asw/S=260*106*0.392*10-4*0.15=67.95 кН/м. Длина анкеровки W1=30*103/2*67.95*103+5*0.012=0.28 m>20d=20*0.012=0.24m.
Во II сечении при шаге хомутов S=0.4 m:
Qsw=260*106*0.392*10-4=25.48 кН/м.
Длина анкеровки W2=40*103/2.25.48*103+5*0.012=0.84m>20d=0.24m.
Во II пролете принята арматура 2 ø12 А-III+2ø14 A-III с Аs=5,34*10-4 m2.
h0=0.44 m;
μ=5.34*10-4/0.2*0.44=0.091;
ζ=0.0061*365*106/0.9*11.5*106=0.215;
η=1-0.5*0.215=0.892;
Ms=As*Rs*h0*η=5.34*10-4*365*106*0.892*0.44=76.5 кН*м.
Стержни 2ø14 А-III с As=3.08*10-4 m2 доводится до опор h0=0.47 m;
μ=3.08*10-4/0.2*0.47=0.0033;
ζ=0.0033*365*106/0.9*11.5*106=0.116;
η=1-0.5*0.116=0.942.
Ms=As*Rs*h0*η=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.
В месте теоретического обрыва стержня 2ø12 А-III поперечная сила Q3=40 кН;
qsw=25.48 кН/м; Длина анкеровки: W3=40*103/2*25.48*103+5*0.00120.84m>20d=20*0.0012=0.24m.
На средней опоре принята арматура 2ø10 А-III+2ø20 А-III с As=7.85*10-4 m2.
h0=0.44 m;
μ=7.65*10-4/0.2*0.44=0.0089;
ζ=0.0089*365*106/0.9*11.5*106=0.314;
η=1-0.5*0.314=0.843.
Ms=As*Rs*h0*η=7.65*10-4*365*106*0.843*0.44=106.28 кН*м.
Графически определим точки теоретического обрыва двух стержней ø20А – III. Поперечная сила в первом сечении Q4=90 кН; qsw=67.95 кН/м; Длина анкеровки W4=90*103/2*67.95*103+5*0.02=0.76m>20d=20*0.02=0.4m.
На крайней опоре принята арматура 2ø14 А – III с As=3.08*10-4 m2.
Арматура располагается в один ряд.
h0=0.47m;
μ=3.08*10-4/0.2*0.47=0.0033;
ζ=0.0033*365*106/0.9*11.5*106=0.116;
η=1-0.5*0.116=0.942.
Ms=As*Rs*h0*η=3.08*10-4*365*106*0.942*0.47=49.77 кН*м.
Поперечная сила в ---- обрыва стержней Qs=100 кН;
Qsw=67.95 кН/м; Длина анкеровки – W5=100*103/2*67.95*103+5*0.014=0.8m>20d=20*0.014=0.28m.
3.10 Расчет стыка сборных элементов ригеля.
Рассматриваем вариант бетонированного стыка. В этом случае изгибающий момент на опоре воспринимается соединительными и бетоном, заполняющий полость между торцами ригелей и колонной.
Изгибающий момент на грани колонны: М=94,96 кН*м. Рабочая высота сечения ригеля
h0=h-a=0.5-0.015=0.485 m. Принимаем бетон для замоноличивания класса B20; Rb=11.5 МПа.
gbr=0.9;
Арматура – класса А-III, Rs=365 МПа.
Вычисляем: αm=M/Rb*b*h02=94.96*103/0.9*11.5*106*0.2*0.4852=0.195
По таблице 3.1[1] находим: η=0,89 и определяем площадь сечения соединительных стержней:
As=M/Rs*h0* η=94.96*103/365*106*0.89*0.485=6.03*10-4 m2.
Принимаем: 2ø20 А-III с As=6.28*10-4 m2.
Длину сварных швов определяем следующим образом:
∑lm=1.3*N/0.85*Rw*hw=1.3*220*103/0.35*150*106*0.01=220 кН,
где N=M/h0*η=94.96*103/0.89*0.485=220 кН.
Коэффициент [1,3] вводим для обеспечения надежной работы сварных швов в случае перераспределение моментов вследствие пластических деформаций.
При двух стыковых стержнях и двусторонних швах длина каждого шва будет равна :
lw=∑lw/4+0.01=0.22/4+0.01=0.06 m.
Конструктивное требование: lw=5d=5*0.02=0.1 m.
Принимаем l=0.1m
Площадь закладной детали из условия работы на растяжение:
A=N/Rs=220*103/210*106=10.5*10-4 m2.
Принимаем 3 Д в виде гнутого швеллера из полосы g=0.008 m длиной 0,15 м;
A=0.008*0.15=12*10-4 m2>A=10.5*10-4 m2.
Длина стыковых стержней складывается из размера сечения колонны, двух зазоров по 0,05 м и l=0.25+2*0.05+2*0.1=0.55 m.
- Расчет внецентренно сжатой колонны.
4.1 Определение продольных сил от расчетных усилий.
Грузовая площадь средней колонны при сетке колонны 6х52, м равна Агр=6*5,2=31,2 м2.
Постоянная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qперекр=3920*31,2*0,95=116,2 кН, от ригеля Qbm=(2.61*103/5.2)*31.2=15.66 кН; от колонны: Qcol=0.25*0.25*4.2*25000*1.1*0.95=6,86 кН., Итого: Gперекр=138,72 кН.
Временная нагрузка от перекрытия одного этажа с учетом jn=0.95: Qвр=4800*31,2*0,95=142,27 кН, в точности длительная: Qврдл=3000*31,2*0,95=88,92 кН, кратковременное Qвркр=1800*31,2*0,95=53,35 кН.
Постоянная нагрузка при весе кровли и плиты 4 КПа составляет: Qпок=4000*31,2*0,95=118,56 кН, от ригеля : Qвш=15,66 кН; от колонны: Qcol=6,86 кН;
Итого: Gпокр=141,08 кН.
Снеговая нагрузка для города Москвы – при коэффициентах надежности по нагрузке jf=1.4 и по назначению здания jn=0.95: Qcн=1*31,2*1,4*0,95=41,5 кН, в точности длительная:
Qснl=0.3*41.5*103=12.45 кН; кратковременная : Qснкр=0,7*41,5*103=29,05 кН.
Продольная сила колонны I этажа от длительных нагрузок :
Nl=((141.08+12.45+(138.72+88.92)*2)*103=608.81 кН; то же от полной нагрузки N=(608.81+29.05+53.35)*103=691.21 кН.
4.2 Определение изгибающих моментов колонны от расчетных нагрузок.
Определяем максимальный момент колонн – при загружении 1+2 без перераспределения моментов. При действии длительных нагрузок:
М21=(α*g+β*φ)*l2= - (0.1*27.36+0.062*17.1)*103*5.22= - 102.65 кН*м.
N23= - (0,091*27,36+0,03*17,1)*103*5.22= - 81.19 кН*м.
При действии полной нагрузки: М21= - 102,65*103-0,062*10,26*103*5,22= - 119,85 кН*м;
М23= - 81,19*103-0,03*10,26*103*5,22= - 89,52 кН*м.
Разность абсолютных значений опорных моментов в узле рамы: при длительных нагрузках
∆Мl=(102.65-81.19)*103=21.46 кН*м;
∆М=(119,85-89,52)*103=30,33 кН*м.
Изгибающий момент колонны I этажа: М1l=0.6*∆Мl=0.6*21.46*103=12.88 кН*м; от полной нагрузки: М1=0,6*∆М=0,6*30,33*103=18,2 кН*м.