Исследование магнитного гистерезиса
Рефераты >> Физика >> Исследование магнитного гистерезиса

Рассмотренный ранее способ расчета магнитной индукции груб, т.к. в процессе расчета, формула (*), вносится некоторая не точность в вычисления (падение напряжения во вторичной обмотке). Существует более точный способ, который рассматривает переходные процессы в RC— цепи (интегрирующей цепи).

Рассмотрим данный способ.

Для большей понятности построим схему RC– цепи.

Напряжение U0 (входное напряжение или ЭДС вторичной обмотки) определяется как сумма (uR + uc), при этом токи в резисторе и на конденсаторе равны IR=IC. Исходя из того, что емкость С есть отношение заряда q к падению напряжения на конденсаторе UС, а ток в цепи есть скорость изменения заряда, можно записать, что

Таким образом, следует, что ток IR в резисторе можно вычислить по следующей формуле:

Отсюда, входное напряжение U0 равно

Полученному дифференциальному уравнению соответствует характеристическое уравнение следующего вида

где λ — корень характеристического уравнения: λ=-1/RC.

Общее решение будет в виде суммы двух составляющих:

uС = u' + u"

где u' — составляющая соответствующая установившемуся режиму;

u" — составляющая, которой соответствует свободный процесс.

Т.к. u' это установившийся режим при котором u'=U0, таким образом, I'=0.

Для того чтобы определить вторую составляющую u" нам необходимо решить однородное дифференциальное уравнение, которому соответствует следующее выражение

Итак, мы пришли к решению общего вида

Найдем константу А из начальных условий, т.е. при t=0:

После преобразований, получаем

где RC — постоянная времени, равная промежутку времени, по истечению которого напряжение в цени изменяется в е раз, по сравнению со своим исходным напряжением U0.

Зная, что eх можно разложить в ряд Тейлора

который для нашего случая примет следующий вид

Ограничимся двумя первыми членами разложения.

Подставляя полученное разложение в формулу (**) получаем

Таким образом, конечный вид формулы будет следующий

Итак, из предыдущих рассуждений следует, что входное напряжение U0 равно скорости изменения магнитного потока Ф через контур (вторичная обмотка экспериментального образца). В свою очередь магнитный поток Ф есть произведение магнитной индукции В на площадь контура S. Иначе говоря, можно записать

или

где S — площадь контура (поперечное сечение магнитопровода);

ω — количество витков охватываемых контуром (в данном случае ω = ω2 ).

Напряженность магнитного поля в данном способе рассчитывается аналогичным образом

Исходя из полученных зависимостей, можно произвести исследование магнитных свойств ферромагнитных материалов, т.е. благодаря электронному осциллографу получаем на экране экспериментальную зависимость В от Н (петлю гистерезиса), по которой затем определяем напряженности (максимальную и коэрцитивную силу) и магнитные индукции (максимальную и остаточную) поля, а также можно определить магнитную проницаемость μ данного материала.

Лабораторная установка.

В этой части курсовой работы опишем лабораторную установку, при помощи которой производят исследование ферромагнитного материала, а точнее двух типов ферромагнитных материалов (феррит и электротехническая сталь).

Схема установки приведена в приложении.

Установка работает в трех режимах (в зависимости от положения тумблера Тмб):

0 – режим нейтрального положения, т.е. напряжение на исследуемые образцы не подано, цепь обесточена;

I – в этом режиме производят измерение ферромагнитных свойств тороидального феррита М2000НМ типоразмера К20х12х6;

II – в этом режиме производят исследование магнитопровода трансформатора ТВК-90-ПЦ-5.

Необходимо помнить, что установка работает на переменном напряжении, и во избежании несчастных случаев нужно соблюдать технику безопасности.

Также не следует включать режим I при входном напряжении частотой 50 Гц, т.е. в "сеть" ибо это действие может привести к порче оборудования.

 


Страница: