Исследование магнитного гистерезиса
Магнитопроводы ГАММАМЕТ® 412А заменяют магнито-мягкие железоникелевые сплавы и ферриты с прямоугольной петлей магнитного гистерезиса.
Область применения:магнитные усилители, импульсные трансформаторы, дроссели насыщения, магнитные ключи.
Таблица №1 |
"Магнитные свойства некоторых магнито-мягких материалов". |
В таблице приведены данные о магнитных свойствах некоторых магнито-мягких материалах. Такие материалы намагничиваются в относительно слабых магнитных полях и обладают высокими значениями начальной µн и максимальной µmax магнитных проницаемостей, малым значением коэрцитивной силы Hc . Значения Bmax - максимальной магнитной индукции – соответствует намагниченности насыщения ферромагнетиков.
Ферромагнетик |
Вmax Tл |
µн |
µmax |
Нс А/м |
Свойства |
Альсифер |
1,1 |
20000 |
117000 |
1,8 |
Отличается механической твердостью и хрупкостью. Обладает малой коэр-ой силой и высокими значениями магнитных проницаемостей. Удельное эл. сопротивление 0,6 мкОм·м. Идет на изготовление магнитопро-д, корпусов приборов. |
Пермаллои высоко - никелевые |
0,70-0,75 |
14000-50000 |
60000-300000 |
0,8-4,8 |
Сплав, обладающий высокой магнитной проницаемостью и небольшой коэр-ой силой. Применяется для изготовления сердечников слаботочных транс-ов звукового диапазона, дросселей и т.д. |
Электротехни-ческая сталь |
2 |
200-600 |
3000-8000 |
9,6-64,0 |
Сталь электротехническая (тран-ая) используется для изготовления сердечников транс-ов, дросселей, эл. машин и т.д. |
Ферриты никель-цинковые и марганец-цинковые |
0,18-0,40 |
100-6000 |
3000-10000 |
8-120 | |
Железо (технически чистое, мин. кол-во примесей) |
2,16 |
250 |
7000 |
64 | |
Магнитопроводы ГАММАМЕТ®412А |
1,12 |
600 000 |
1,2 |
Область применения: магнитные усилители, импульсные трансформаторы, дроссели насыщения, магнитные ключи. Температура Кюри 610 °C Плотность: 7400 кг/м3 Удельное электросопротивление: 1,25•10-6 Ом•м |
б) Магнитно-твердые материалы (таблица №2) предназначены для изготовления постоянных магнитов самого различного назначения. Эти материалы характеризуются большой коэрцитивной силой и большой остаточной индукцией.
К магнитно-твердым материалам относятся: углеродистые, вольфрамовые, хромистые и кобальтовые стали; их коэрцитивная сила 5000-8000 А/м, остаточная индукция 0,8 – 1Тл. Они обладают ковкостью, поддаются прокатке, механической обработке и выпускаются промышленностью в виде полос или листов.
К магнитно-твердым материалам, обладающим лучшими магнитными свойствам, относятся сплавы: альни, альниси, альнико и др. Они характеризуются коэрцитивной силой Hc =20 000¸60 000 А/м и остаточной индукцией Br=0,4¸0,7 Тл.
Таблица №2 |
"Магнитные свойства некоторых магнито-твердых материалов". |
В таблице приведены основные данные о магнитных свойствах некоторых магнито-твердых материалов. Эти материалы намагничиваются в сравнительно сильных магнитных полях и обладают большими значениями коэрцитивной силы Hc, большой остаточной магнитной индукцией Br, большими значениями плотности энергии магнитного поля ω=Br ּHc и сравнительно малыми значениями магнитной проницаемости.
Ферромагнетик |
Нс, А/м |
Вr, Tл |
ωmax, Дж/м3 |
Свойства |
Альни-3 |
40000 |
0,5 |
7200 |
Сплавы обладают большими значениями коэрцитивной силы и остаточной индукцией. Плотность 6900 кг/м3 (альни) и 7100 кг/м3 (альнико). Применяются для изготовления литых постоянных магнитов. |
Альнико-15 |
48000 |
0,75 |
12000 | |
Альнико-18 |
52000 |
0,90 |
19400 | |
Магнико |
40000 |
1,23 |
32250 |
Высококоэрцитивный сплав, плотностью 7000кг/м3. Сплав используется для изготовления постоянных магнитов. Магниты из магнико при равномерной магнитной энергии в 4 раза легче магнитов из сплава альни. |
Экспериментальное изучение свойств ферромагнетиков.
Большой вклад в экспериментальное изучение свойств ферромагнетиков внес А. Г. Столетов. Предложенный им экспериментальный метод заключался в измерении магнитного потока Фm в ферромагнитных кольцах при помощи баллистического гальванометра.
Тороид, первичная обмотка которого состояла из N1 витков, имел сердечник из исследуемого материала (например, отожженного железа). Вторичная обмотка из N2 витков была замкнута на баллистический гальванометр G (рис. А). Обмотка N1 включалась в цепь аккумуляторной батареи Б. Напряжение, приложенное к этой обмотке, а, следовательно, и силу тока I1 в ней можно было изменять с помощью потенциометра R1. Направление тока изменялось посредством коммутатора К.
При изменении направления тока в обмотке N1 на противоположное, в цепи обмотке N2 возникал кратковременный индукционный ток и через баллистический гальванометр проходил электрический заряд q , который равен отношению взятого с обратным знаком изменения потокосцепления вторичной обмотки к электрическому сопротивлению R в цепи гальванометра: