Хаос, необратимость времени и брюссельская интерпретация квантовой механики
Теперь нетрудно установить связь между потоком корреляций и теоремой Пуанкаре. Интегрируемые системы – это системы, в которых мы можем исключить взаимодействие, поэтому исключается и поток корреляций. Следовательно, если эволюция интегрируемой системы начинается с вакуума корреляций, в ходе эволюции никогда не возникнут двойные, тройные и т.д. корреляции. Потока корреляций в интегрируемых системах не существует.
В отличие от интегрируемых систем, в неинтегрируемых системах Пуанкаре существует непрерывный процесс рождения корреляций. Неинтегрируемость означает, что мы не можем исключить поток корреляций с помощью любого (канонического) преобразования. Поток корреляций, как и все необратимые процессы, носит внутренний характер.
Кроме того, в неинтегрируемых системах вакуум корреляций становится зависящим от времени. Таким образом, делается заключение, что кинетические уравнения типа уравнений Больцмана могут выполняться только для "неинтегрируемых" систем, как классических, так и квантовых.
2.3 Проблема несводимого описания
Эволюция во времени плотности распределения вероятности определяется уравнением Лиувилля, которое следует из классической гамильтоновой динамики. В операторной записи оно имеет вид
при этом явный вид оператора Лиувилля L может быть выведен из гамильтониана. Следует отметить, что как и операторы квантовой механики, оператор Лиувилля эрмитов.
Теория ансамблей Гиббса обобщается на случай квантовой теории с той лишь разницей, что в квантовой теории гильбертово пространство содержит лишь половину переменных, входящих в классическое описание. Место плотности вероятности занимает матрица плотности , эволюция её во времени описывается уравнением Лиувилля–фон Неймана . Так как новый оператор Лиувилля действует не на волновые функции, а на матрицу плотности, которая сама по себе оператор, L обычно называют супероператором. Оператор L – эрмитов, а пространство матриц плотности – гильбертово. [5]
Использование операторного формализма позволяет в статистической механике применять к классическим системам методы, разработанные для квантовых систем: определение собственных функций и собственных значений для оператора Лиувилля.
Как и в квантовой механике, мы можем рассмотреть задачу на собственные значения:
При этом, поскольку L – эрмитов оператор, его собственные значения ln действительны. Кроме того, из функций |jn > можно составить полную ортонормированную систему, по которой раскладывается любая функция распределения:
.
Эволюция же распределения во времени определяется соотношением
r(t)=U(t)r(0)=e–iLtr(0).
Как и в квантовой механике, U(t) – унитарный оператор, и поэтому
.
Таким образом, распределение вероятности разлагается в сумму независимо развивающихся во времени мод, каждая из которых входит с весом cn, постоянным во времени. Поскольку собственные значения вещественны, каждая мода "вращается" в фазовом пространстве. Единственное отличие от квантовой механики состоит в том, что в данном случае каждая мода вносит свой вклад непосредственно в вероятность r, а не в амплитуду вероятности y, как в квантовой механике.
Проблема состоит в том, что решение уравнения Лиувилля для матрицы плотности в гильбертовом пространстве не описывает приближения к равновесию [1, с.166].
Мы сталкиваемся здесь с основной трудностью теории необратимых процессов. Вращение по фазе сохраняет симметрию во времени. Чтобы получить нарушение симметрии во времени, было бы необходимо иметь комплексные собственные значения ln = ln' + iln'', тогда exp(–ilnt)=exp(–iln't)exp(–ln''t), и второй множитель порождает экспоненциальное затухание. Но это невозможно, поскольку мы имеем дело с эрмитовым оператором и используем формализм гильбертова пространства.
Одна из возможностей, к принятию которой склоняются многие авторы, состоит в утверждении, что поскольку уравнение Лиувилля обратимо во времени, необратимость возникает в результате грубой зернистости, то есть приближённого описания. Но на микроскопическом уровне мы снова возвращаемся к парадоксу времени. Решить его можно только двумя способами: выбрать в качестве исходных новые уравнения движения, с самого начала содержащие необратимость, или отказаться от гильбертова пространства. Концепция Пригожина реализует вторую возможность.
Для интегрируемых классических систем решение задачи на собственные значения оператора L приводит к траекториям. В квантовой теории ансамблей ситуация аналогична. Если задача на собственные значения для гамильтониана H решена, то мы можем решить её и для L и представить решение в терминах волновых функций. Для квантовых систем с дискретным спектром никаких трудностей при этом не возникает, но при переходе к большим системам Пуанкаре (с непрерывным спектром и непрерывными множествами резонансов) не существует уже конструктивного метода решения задачи ни для H, ни для L [1, с.164].
Отличие статистического описания, даваемого школой Пригожина, от классического эйнштейновско-гиббсовского именно в том, что оно несводимо. Оно неприменимо к отдельной траектории. Это утверждение представляет собой строгий математический результат, полученный в результате применения к анализу хаоса методов современного функционального анализа. Кроме того, в таком необратимом вероятностном описании прошлое и будущее играют различные роли. Хаос приводит к включению стрелы времени в фундаментальное динамическое описание.
Легко показать, что хаос, определяемый как обычно, приводит к несводимому вероятностному описанию. Пригожин обращает это утверждение и выдвигает новое определение: все системы, допускающие несводимое вероятностное описание, по определению считаются хаотическими [1, с.9].
3. БРЮССЕЛЬСКАЯ ИНТЕРПРЕТАЦИЯ КВАНТОВОЙ МЕХАНИКИ
Э.Шрёдингер
3.1 Альтернативные интерпретации квантовой механики
Вероятно, квантовая механика – одна из немногих, если не единственная работающая физическая теория, по поводу интерпретации которой на фундаментальном уровне до сих пор ведутся содержательные споры. Данная работа посвящена краткому изложению позиции и следствий только одной из интерпретаций, однако автору кажется невозможным при этом не упомянуть самые распространённые альтернативные интерпретации. (Более подробно – см.[2]).
Наиболее известны следующие подходы к квантовой механике:
– копенгагенская интерпретация;
– статистическая интерпретация;
– "неоклассические" интерпретации со скрытыми параметрами;
– многомировая интерпретация;
– брюссельская интерпретация, развиваемая школой Пригожина.