Применение лазеров
Рефераты >> Физика >> Применение лазеров

План.

1. Введение.

2. Лазерный луч.

3. Лазерный луч в роли сверла.

4. Лазерная резка и сварка.

5. Лазерный луч в роли хирургического скальпеля.

6. Лазерное оружие.

7. Заключение.

1. Введение.

Уже самое начало XX века бы­ло отмечено величайшими достижениями человечес­кого ума. 7 мая 1895 г. на заседании Русского физико-химического общества А. С. Попов продемонстриро­вал изобретенное им устройство связи без проводов, а год спустя аналогичное устройство предложил италь­янский техник и предприниматель Г. Маркони. Так родилось радио. В конце уходящего века был создан автомобиль с бензиновым двигателем, который при­шел на смену изобретенному еще в XVIII в. паровому автомобилю. К началу XX столетия уже действовали линии метро в Лондоне, Нью-Йорке, Будапеште, Вене. 17 декабря 1903 г. американские инженеры братья Орвилл и Уилбор Райт пролетели 260 м на созданном ими первом в мире аэроплане, а через 12 лет русский инженер И. И. Сикорский сконструировал и построил первый в мире многомоторный самолет, дав ему имя «Илья Муромец».

Не менее потрясающими оказались достижения в физике. Только за одно десятилетие на рубеже двух веков было сделано пять открытий. В 1895 г. немецкий физик В. Рентген открыл новый вид излучения, на­званный позднее его именем; за это открытие он получил в 1901 г. Нобелевскую премию, став, таким образом, первым в истории нобелевским лауреатом. В 1896 г. французский физик Антуан Анри Беккерель открыл явление радиоактивности — Нобелевская пре­мия 1903 г. В 1897 г. английский физик Дж. Дж. Томсон открыл электрон и в следующем году измерил его заряд — Нобелевская премия 1906 г. 14 декабря 1900 г. на заседании Немецкого физического общества Макс Планк дал вывод формулы для испускательной спо­собности черного тела; этот вывод опирался на совер­шенно новые идеи, ставшие фундаментом квантовой теории — одной из основных физических теорий XX века. В 1905 г. молодой Альберт Эйнштейн — ему тогда было всего 26 лет — опубликовал специальную теорию относительности. Все эти открытия производили оше­ломляющее впечатление и многих повергали в за­мешательство — они никак не укладывались в рамки существовавшей физики, требовали пересмотра ее ос­новных представлений. Едва начавшись, 20-й век возвестил о рождении новой физики, обозначил не­видимую грань, за которой осталась прежняя физика, получившая название «классическая».

И вот сегодня человек получил в своё распоряжение всемогущий луч лазера. На что употребит он это новое завоевание ума? Чем станет лазер: универсальным инструментом, надёжным помощником или, напротив, грозным космическим оружием, ещё одним разрушителем?

2. Лазерный луч.

Человек никогда не хотел жить в темноте; он изобрел много разнообразных источников света — от канувших в прошлое стеарино­вых свечей, газовых рожков и керосиновых ламп до ламп накаливания и ламп дневного света, которые сегодня освещают наши улицы и дома. И вот появился еще один источник света — лазер.

Этот источник света совершенно необычен. В отли­чие от всех других источников, он вовсе не предназна­чается для освещения. В отли­чие от других источников света, лазер генерирует световые лучи, способные гравировать, сваривать, ре­зать материалы, передавать информацию, осуществ­лять измерения, контролировать процессы, получать особо чистые вещества, направлять химические реак­ции . Так что это поистине удивительные лучи.

В чем же причина удивительных свойств лазерного луча? Для объяснения этих свойств в научном языке есть специальный термин - когерентность.

В общих чертах такое пояснение дать вроде бы несложно. Вполне понятно, что поток света, распрост­раняющийся от любого источника, есть суммарный результат высвечивания великого множества элемен­тарных излучателей, каковыми являются отдельные атомы или молекулы светящегося тела. В случае лам­пы накаливания каждый атом-излучатель высвечивает­ся, никак не согласуясь с другими атомами-излучателя­ми, поэтому в целом получается световой поток, кото­рый можно назвать внутренне неупорядоченным, хао­тическим. Это есть некогерентный свет. В лазере же гигантское количество атомов-излучателей высвечива­ется согласованно — в результате возникает внутренне упорядоченный световой поток. Это есть когерентный свет.

Внутренне упорядоченный, иными словами, когерентный световой пучок отличается, во-первых, высокой монохроматичностью и, во-вторых, исключительно малой расходимостью. Это понятно, поскольку разные атомы при взаимной согласованнос­ти испускают волновые цуги одинаковой (точнее гово­ря, почти одинаковой) частоты и одинакового (почти одинакового) направления движения.

Когда мы говорим о лазерном луче, то обычно представляем себе яркий и тонкий световой шнур или световую нить. Эту нить можно увидеть, если включить гелий-неоновый лазер. Правда, этот лазер маломощный - настолько, что его луч можно спокойно «ловить» в руку. К тому же луч не «ослепи­тельно белый», а сочного красного цвета. Чтобы он был лучше виден, надо создать в лаборатории полу­мрак и легкую задымленность. Луч почти не расши­ряется и везде имеет практически одинаковую интен­сивность. Можно разместить на его пути ряд зеркал и заставить его описать сложную изломанную траекто­рию в пространстве лаборатории. В результате возник­нет эффектное зрелище-комната, как бы «перечеркну­тая» в разных направлениях яркими красными прямы­ми нитями.

Однако не всегда лазерный луч выглядит столь эффектно. Например, луч СО2-лазера вообще неви­дим — ведь его длина волны попадает в инфракрасную область спектра. Кроме того, не следует думать, что лазерный луч - это обязательно непрерывный поток све­товой энергии. В большинстве случаев лазеры генери­руют не непрерывный световой пучок, а световые импульсы.

Современная лазерная техника позволяет регулиро­вать длительность, энергию и даже форму лазерных импульсов. Регулируется и частота следования им­пульсов; это очень важно, так как от частоты следова­ния импульсов существенно зависит средняя мощность лазерного излучения. О том, как управляют лазерны­ми импульсами, будет рассказано позднее.

3. Лазерный луч в роли сверла.

Сверление отверстий в ча­совых камнях — с этого начиналась трудовая деятель­ность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников сколь­жения. При изготовлении таких подшипников требует­ся высверлить в рубине — материале весьма твердом и в то же время хрупком — отверстия диаметром всего 0,1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с ис­пользованием сверл, изготовленных из тонкой рояль­ной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель­ных перемещений. Для сверления одного камня требо­валось до 10-15 мин.

Начиная с 1964 г. малопроизводительное механи­ческое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «ла­зерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие — он его пробивает, вызы­вая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в частности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазер­ной установки в автоматическом режиме —камень в секунду. Это в тысячу раз выше производительности механического сверления!


Страница: