Математическое моделирование физических задач на ЭВМ
Рефераты >> Физика >> Математическое моделирование физических задач на ЭВМ

Важным подграфом является путь графа, представляю­щий непрерывную последовательность ветвей, связывающую пару выбранных узлов, с прохождением каждого узла не болееодного раза. Смежные вет­ви пути имеют общий узел, так что к каждо­му узлу присоединены две ветви, лишь к край­ним узлам — по одной ветви.

На рис. 3.1, б пути, свя­зывающие узлы 1, 4, образованы ветвями 2-4, 5-6, 1, 2-3-5 и т. д. Если в заданном графе имеется хотя бы один путь между любой парой узлов, то граф называется связным—он соответствует цепи, элементы которой соединены только электрически. Граф рис. 3.1, б является примером связного графа, а рис. 3.2, б —несвяз­ного: он состоит из двух раздельных частей, элементы ко­торых могут иметь связь, например, через взаимную ин­дуктивность.

Для составления уравнений соединений по законам Кирх­гофа необходимо на всех ветвях графа стрелками указать положительные направления токов. В результате получается граф с ориентированными ветвями, называемый направлен­ным графом токов цепи (рис. 3.1, б), ветви которого явля­ются токами. Положительные полярности напряжений ветвей удобно принимать согласованными с положительными на­правлениями токов. Тогда в цепях, составленных из двух­полюсных элементов, направленный граф напряжений, реб­ра которого являются напряжениями ветвей, будет совпа­дать с графом токов. Переход к направленному графу позволяет производить аналитическую запись структуры графа и подграфов в виде таблиц – матриц, называемых топологическими матрицами. Аналитическое представ­ление графа необходимо для формирования уравнений сложной цепи с помощью ЭВМ.

Полное описание структуры направленного графа дает nуxnв - матрица соединений, nу строк ко­торой являются порядковыми номерами узлов, nв столб­цов – номерами ветвей. Элементами аi,j этой матрицы яв­ляются символы наличия или отсутствия ветви k, присое­диненной к узлу i, которые принимаются равными +1 (—1) для выходящей из узла (входящей) ветви и 0, если ветвь не связана с узлом.

Для того чтобы записать матрицу соединений, достаточно для каждой ветви определить номера обоих соединяемых узлов i, j и заполнить клеточки на пересечениях строк i, j и столбца с номером ветви k значениями +1, — 1; в остальных клеточках должны быть проставлены нули. Для графа рис. 3.1,б получим полную матрицу соединений:

(3.1)

Так как каждая ветвь соединяет два узла—выходит из одного узла и входит в другой, то столбец матрицы состоит из двух ненулевых элементов +1, —1 (их сумма равна нулю), так что достаточно заполнить таблицу для ny-1 узлов, которая является редуцированной матрицей соединений А. Эту незави­симую матрицу можно получить из полной матрицы Аa вычеркиванием строки, соответствующей выбранному базисно­му узлу.

Приняв в качестве базисного узел 4 и соответственно вычеркивая четвертую строку в (3.1), получим редуцированную матрицу соединений:

(3.2)

Строка матрицы А показывает, какие ветви выходят из каждого независимого узла графа цепи (и входят в него), а столбец – к каким узлам присоединена ветвь.

В отличие от полной матрицы Аа у реду­цированной матрицы соединений связного графа множест­во всех строк линейно независимо. Отсюда можно сделать вывод о том, что система уравнений равновесия токов в ny-1 узлах цепи линейно независима. Если ввести вектор токов пв, ветвей:

i=[i1, i2, … inв]Т, (3.3)

то систему независимых уравнений в nу-1 узлах по ЗТК в соответствии со смыслом матрицы А можно записать в виде:

Ai=0, (3.4)

где 0=[0 0 … 0]T - нулевой вектор размерности nу-1.

Для графа цепи рис. 3.1, б с матрицей соединений (3.2) имеем:

Транспонированная матрица соединений имеет вид:

(3.5)

Строка этой матрицы показывает, между какими узлами присоединена каждая ветвь.

Если задана матрица соединений, то всегда можно построить соответствующий граф. Для этого, расположив точки, обозначающие узлы, следует соединить их попарно ветвями. Номера и направление ветвей определяются ненулевыми эле­ментами столбцов матрицы соединения.

2. Уравнения контурных токов

Метод контурных токов применим к цепям с планарным графом (рис. 3.3, а). В качестве переменных принимают замкну­тые контурные токи, проходящие по ветвям, образующим все внутренние ячейки графа.

Если намечать контуры – периметры ячеек – по порядку, начиная с одного края цепи, то легко убедиться, что в каждый последующий контур вносится новая ветвь, не вошедшая в предыдущие контуры. Отсюда следует, что уравнения равно­весия напряжений в таких контурах будут линейно независимы. Число внутренних ячеек равно nx=nв-ny+1.

Каждой ячейке при­писывается один кон­турный ток, замыкаю­щийся по ветвям, об­разующим ячейку. Об­щее число перемен­ных – контурных токов – равно числу ячеек. Направления всех контурных токов принимают одинаковыми – по часовой стрел­ке. Как видно из рис. 3.3, a, по каждой ветви цепи, за исключением периферийных ветвей, замыкаются два контурных тока, направленные в противоположные стороны. Запишем уравнения соединений.

1. Приравнивая нулю суммы напряжений ветвей всех неза­висимых контуров (ячеек), имеем nх уравнений по ЗНК .

2. Выражая ток каждой ветви через разность двух (в общем случае) замыкающихся по смежным контурам контурных токов, получим nв уравнений по ЗТК:

.

Как видно, токи всех ветвей, т. е. поведение всей цепи, полностью определяются nх контурными токами, число кото­рых меньше числа ветвей.

Запишем уравнения ветвей. Положим для удобства, что выполнено преобразование всех источников тока и цепь содержит только источники напряжения. Примем для общности каждую ветвь состоящей из последовательного соединения резистивного элемента и источника напряжения (рис. 3.3,6). Уравнение такой составной ветви имеет вид:

.

Для получения уравнений относительно выбранных перемен­ных необходимо:

1) с помощью уравнений ветвей в уравнениях равновесия напряжений заменить напряжения всех ветвей токами;

2) токи ветвей в получившейся системе заменить, согласно , контурными токами.

Получим уравнения для одной из ячеек, например первой (рис. 3.3, в), образованной тремя ветвями. Основным уравнени­ем равновесия напряжений в первом контуре будет:

u1+u2+u3=0 (*)

Токи ветвей ячейки:

.(**)


Страница: