Математическое моделирование физических задач на ЭВМ
Рефераты >> Физика >> Математическое моделирование физических задач на ЭВМ

Содержание:

Введение

1. Напряжение и ток в электрической цепи

2. Резистивный элемент

3. Источники

Глава 1. Задача анализа разветвленной цепи

Глава 2. Пример. Результаты вычислений

Глава 3. Методика моделирования

1. Линейный граф и матрица соединений

2. Уравнения контурных токов

3. Алгоритм формирования узловых уравнений

Заключение

Использованная литература

Приложение

Введение

Все электротехнические и радиотехнические устройства пред­ставляют собой электромагнитные устройства, главные про­цессы в которых подчиняются общим законам электромагне­тизма. В любом электромагнитном устройстве происходит движение электрических зарядов, неразрывно связанное с изменяющимся во времени и пространстве электромагнитным полем, двумя сторонами которого являются электрическое и магнитное поля.

Электромагнитные процессы сопровождаются взаимным преобразованием электромагнитной энергии в другие виды энергии. Точный анализ этих процессов, описываемых систе­мами уравнений в частных производных (уравнениями Макс­велла), - задача, трудно разрешимая даже в простейших слу­чаях. Но для инженерных расчетов и проектирования устройств необходим количественный анализ. Поэтому возникает потреб­ность в приближенных методах анализа, позволяющих с достаточной степенью точности решать широкий круг задач. Такие методы дает теория электрических цепей, которая для характеристики электромагнитных процессов вместо векторных величин теории поля, зависящих от пространственных коорди­нат и времени, вводит интегральные скалярные величины – ток и напряжение, являющиеся функциями времени.

Для приближенного учета процессов преобразования электромагнитной энергии в теории цепей вводят идеальные элементы с выводами или полюсами, через которые проходит электрический ток. Простейшими идеальными, базисными эле­ментами являются двухполюсные элементы с двумя полюсами или выводами – индуктивный, емкостный и резистивный эле­менты, учитывающие накопление энергии в магнитном и электрическом полях и необратимое преобразование электро­магнитной энергии в другие виды энергии. Для учета преобра­зования энергии неэлектрической природы (химической, меха­нической, тепловой и т. д.) в электромагнитную энергию вводят элемент с двумя выводами, называемый источником. Наряду с указанными вводят четырехполюсные и многополюсные эле­менты в общем случае с n выводами.

Соединяя между собой соответствующим образом эти идеальные элементы, получают электрическую цепь, приближенно отображающую электромагнитные процессы в каком-либо устройстве по отношению к интересующим выводам.

Теория цепей применима к большому числу устройств, в которых представляют интерес процессы в отдельных точках – выводах.

В настоящее время существуют методы и средства расчета радиотехнических цепей на основе математических моделей, представляющие собой в общем случае системы нелинейных дифференциальных уравнений. Одним из многих таких средств является программа, предложенная в [1], которая представляет собой реализацию математической модели расчета цепей постоянного тока. Программа работает следующим образом: пользователь вводит все данные для расчета цепи, самостоятельно производя анализ цепи, т.е. он вводит количество узлов, количество ветвей с элементами, находящимися на них и номиналы этих элементов. Програма решает получающиеся при этом линейные уравнения и выводит результат вычислений.

Недостатком указанных выше программных средств является отсутствие автоматизированного построения разветвленных цепей, ввода элементов, выбора направления обхода контуров и токов в ветвях по введенной принципиальной схеме. Кроме этого существующие программы не позволяют непосредственно при расчетах проводить анализ полученных результатов, в динамике изменять параметры компонентов.

В связи с этим целью дипломной работы является: разработка математической модели и программы анализа и расчета цепей постоянного тока, автоматического выбора направления обхода контура и направления токов в ветвях цепи, и выводить результаты вычислений.

В данной дипломной работе рассматривается метод расчета и анализа линейных разветвленных цепей содержащих резистивные элементы и источники ЭДС с постоянными пара­метрами элементов основанный на использовании законов Кирхгофа.

1. Напряжение и ток в электрической цепи

Электрический ток и напряжение являются основны­ми величинами, характеризующими состояние электрических цепей.

Электрический ток в проводниках представляет явление упорядоченного движения электрических зарядов. Под терми­ном «ток» понимают также интенсивность или силу тока, измеряемую количеством электрического заряда q, прошед­шего через поперечное сечение проводника в единицу вре­мени:

Следовательно, ток представляет собой скорость изменения заряда во времени. В СИ заряд выражается в кулонах (Кл), время – в секундах (с), ток – в амперах (А).

Ток как отношение двух скалярных величин является скалярной алгебраической величиной, знак которой зависит от направления движения зарядов одного знака, а именно условно принятого положительного заряда. Для однозначного опреде­ления знака тока за положительное направление достаточно произвольно выбрать одно из двух возможных направлений, которое отмечают стрелкой (рис. 1.1, а).

Если движение поло­жительного заряда происходит в направлении стрелки, а движение отрицательного заряда—навстречу ей, то ток поло­жителен. При изменении направления движения зарядов на противоположный ток будет отрицательным.

Перед началом анализа на всех участках цепи необходимо отметить положительные направления то­ков, выбор которых может быть произ­вольным. Программа расчета построена так, что за положительное направление тока принято направление движения «по часовой стрелке».

Прохождение электрического тока или перенос зарядов в цепи связаны с преобра­зованием или потреблением энергии. Для определения энергии, затрачиваемой на перемещение заряда между двумя рассмат­риваемыми точками проводника, вводят новую величину – напряжение.

Напряжением называют количество энергии, затрачи­ваемой на перемещение единицы заряда из одной точки в другую:

где w—энергия.

При измерении энергии в джоулях (Дж) и заряда в кулонах (Кл) напряжение выражают в вольтах (В).

Напряжение как отношение двух скалярных величин также является скалярной алгебраической величиной. Для однознач­ного определения знака напряжения между двумя выводами рассматриваемого участка цепи одному из выводов условно приписывают положительную полярность, которую отмечают либо стрелкой, направленной от вывода, либо знаками «+», «-» (рис. 1.1, б, в). Напряжение положительно, если его поляр­ность совпадает с выбранной; это означает, что потенциал вывода со знаком «+», из которого выходит стрелка, выше потенциала второго вывода.


Страница: