Математическое моделирование физических задач на ЭВМ
Рефераты >> Физика >> Математическое моделирование физических задач на ЭВМ

Перед началом анализа должны быть указаны выбранные положительные полярности напряжений – только при этом условии возможно однозначное определение напряжений. В программе по умолчанию каждому источнику ЭДС приписывают «+» к высшему потенциалу, а «-» – к низшему.

Положительную полярность напряжения выбирают согласованной с выбранным положительным направлением тока, когда стрелки для тока и напряжения совпадают или знак «+» полярности напряжения находится в хвосте стрелки, обозначающей положительное направление тока. При согласо­ванном выборе полярности, очевидно, достаточно ограничиться указанием только одной стрелки положительного направления тока.

Для обозначения условно положитель­ной полярности применяют знаки «+», «-» у выводов участка цепи.

2. Резистивный элемент

Под резистивным элементом электрической цепи или активным сопротивлением понимают идеализированный эле­мент, в котором происходит только необратимое преобразование электромагнитной энергии в теплоту или другие виды энергии, а запасание энергии в электрическом и магнитном полях от­сутствует.

По свойствам к этому идеальному элементу довольно близки такие реальные устройства, как угольные сопротивления, реостаты, лампы накаливания при относительно небыстрых изменениях токов.

Условное графическое обозначение резистивного элемента Представлено на рис. 1.2, а, где указаны принятые положитель­ные направления напряжения и тока.

Основное уравнение элемента, связывающее ток и напряжение, так называемая вольт-амперная характеристика, определяется законом Ома, который устанавливает пропорциональ­ность между напряжением и током:

U=RI, I=GU (1.3)

Коэффициент пропорциональности в первом выражении (1.3), равный отношению напряжения и тока, является электрическим сопротивлением:

R=U/I (1.4)

Численно сопротивление равно напряжению на элементе при токе в 1 А. Значение сопротивления выражается в омах.

Обратная величина – отношение тока к напряжению – представляет собой электрическую проводимость:

G=I/U=1/R. (1.5)

В теории линейных электрических цепей сопротивление и проводимость принимают постоянными, не зависящими от тока, напряжения и других величин. В реальных элементах это допущение, так же как и допущение отсутствия запасания энергии, выполняется приближенно.

3. Источники

Под источником в теории цепей понимают элемент, питающий цепь электромагнитной энергией. Эта энергия по­требляется пассивными элементами цепи – запасается в индуктивностях и емкостях и расходуется в активном сопротивлении.

Напряжения источников, представляющие задан­ные функции времени, называют также приложенными к цепи или возбуждающими цепь сигналами. Примерами реальных источников электромагнитной энергии могут служить генераторы постоянных, синусоидальных и импульсных сигналов разнообразной формы, сигналы, полу­чаемые от различного рода датчиков, антенн радиоприемных устройств и т. д. Эти источники сигналов либо являются первичными источниками, в которых происходит непосредст­венное преобразование энергии неэлектромагнитной природы (механической, химической, тепловой и т. д.) в электромагнит­ную энергию, либо получают питание от первичных источников. Источник является актив­ным элементом.

Для анализа цепей вводят идеализированный источник напряжения, который учитывает главные свойства реального источника.

Источник напряжения. Под источником напряжения понимают такой элемент с двумя выводами (полюсами), напряжение между которыми задано в виде некоторой функции времени независимо от тока, отдаваемого во внешнюю цепь.

а) б)

Рисунок 1.3.

Наиболее часто применяемые условные графические обо­значения источника напряжения представлены на рис. 1.3, а и б, где принятая положительная полярность напряжения источника указывается либо стрелкой внутри кружочка, либо большой и малой чертами, малая соответствует знаку «-», а большая - «+». Поскольку положительную полярность напряжения усло­вились обозначать знаками «+», «-», для источника напряже­ния в программе применено обозначение, показанное на рис. 1.3, б.

Глава 1. Задача анализа разветвленной цепи

Электрическую цепь, приближенно отображающую электро­магнитные процессы в реальном устройстве, составляют путем соответствующего соединения между собой рассмотренных двухполюсных элементов: сопротивления, индуктивности, ем­кости и источников сигнала. В общем случае отдельные элементы, а также отдельные участки цепи могут соединиться произвольно. В дипломной работе рассмотрены только соединение сопротивления и источника сигнала, в качестве которого используют ЭДС.

В результате получается электрическая схема, имеющая определенную геометрическую конфигурацию. На рис. 4 приложения показан пример схемы электрической цепи, составлен­ной из нескольких сопротивлений и источников ЭДС.

Основными понятиями, характеризующими геометрическую конфигурацию разветвленной цепи, являются ветвь и узел.

Под ветвью в общем случае понимают участок цепи с двумя выводами. Токи ветви принимают в качестве неизвестных переменных, характеризующих состояние цепи. Поэтому, что конкретно следует понимать под ветвью, зависит от выбора переменных цепи. Ветвью можно считать каждый элемент цепи. Но для уменьшения числа переменных за ветви иногда принимают также участки из последовательного соеди­нения отдельных элементов, токи которых имеют одно и то же значение, и участки из параллельного соединения отдельных элементов, напряжения на которых имеют одно и то же значение. При анализе схемы за ветвь принимается участок цепи между двумя узлами цепи.

Узел электрической цепи – это точка на схеме, в которой сходятся более двух ветвей [4]. Например, на рисунке №4 приложения – 4 узла.

Задача анализа электри­ческой цепиформулируется та­ким образом: Заданы схема электрической цепи со значения­ми всех ее элементов, а также напряжения источников, действующих в цепи. Требуется найти токи ветвей. В дальнейшем будем применять общие термины, назы­вая заданные напряжения источников функциями воз­буждения или сигналами, а искомые токи вет­вей, определяемые в результате анализа цепи, - реакциями. Следовательно, требуется найти реакции цепи на действие заданных сигналов.

Выводы – узлы или ветви, реакции которых необходимо найти, - называют выходными, а выводы, к которым при­соединены источники, - входными.

Программа предназначена для анализа любой линейной цепи произвольной конфигура­ции с любым конечным числом элементов.

Для определения искомых реакций – токов ветвей в общем случае – необходимо со­ставить уравнения цепи с помощью двух систем уравнений:

1) уравнений элементов, связывающих ток и напряже­ние каждого элемента, а также заданные напряжения. Уравнения элементов не зависят от схемы и геометрической конфигурации цепи, в которую входят элементы;


Страница: