Методы измерений
Конструктивное выполнение полупроводниковых тензорезисторов аналогично тонкопленочным тензорезисторам (рис. 11, а). Те же технологические приемы применяются и при изготовлении полупроводниковых тензорезисторов. При этом используются два основных способа:
1. полупроводниковый кремниевый тензорезистор наносится на изолирующую сапфировую подложку (КНС структура);
2. полупроводниковый кремниевый тензорезистор с р-проводимостью наносится на кремниевую подложку с n-проводимостью (КНК структура).
В зависимости от конструктивного исполнения полупроводниковые тензорезистивные преобразователи применяются для измерения абсолютного и избыточного давления (разряжения) и разности давлений.
Преимуществами тензорезистивных полупроводниковых преобразователей является: высокий коэффициент тензочувствительности; возможность миниатюризации чувствительного элемента; непосредственное применение достижений современной микроэлектроники.
К недостаткам полупроводниковых преобразователей относятся: сложность технологии изготовления ЧЭ, что неприемлемо при мелкосерийном производстве; хрупкость ЧЭ, что ограничивает их применение в условиях сотрясений, скачков давления; относительно большое влияние температуры на коэффициент тензочувствительности. Последнее особенно важно для тензорезисторов, основанных на КНК структурах, максимальная температура эксплуатации которых ограничена 120°С.
Манометры с силовой компенсацией
Все рассмотренные выше деформационные манометры основаны на методе прямого преобразования давления (см. рис. 7, а). Метод уравновешивающего преобразования давления (см. рис. 7, б), хотя и менее распространен в технике измерения давления, но продолжает сохранять заметную роль в некоторых отраслях промышленности, в которой находят применение манометры с силовым уравновешиванием двух типов: уравновешивание измеряемого давления пневматическим давлением (пневматическая силовая компенсация); уравновешивание измеряемого давления электромагнитными силами (электромагнитная силовая компенсация).
При этом во время уравновешивания силы, возникающей в первичном ЧЭ под действием измеряемого давления, силой, развиваемой цепью обратной связи, происходит незначительное перемещение первичного ЧЭ, независимо от его жесткости, что позволяет в широких пределах варьировать чувствительность измеряемой системы.
1.3.5. Перспективы развития деформационных манометров
По принципу действия деформационные манометры требуют для своей градуировки применения методов и средств, основанных на абсолютных методах воспроизведения давления. Повышение их точности, в принципе, ограничено точностью применяемых при градуировке жидкостных и поршневых эталонов, которая характеризуется погрешностями порядка 1 • 10-5 - 5 • 10-5. Это позволило уже в настоящее время создать образцовые деформационные манометры, погрешности которых не превышают 2,5• 10-4 - 5 • 10-4 (0,025—0,05 %).
Одно из важнейших направлений развития точных деформационных манометров — разработка портативных образцовых переносных манометров, пригодных для контроля рабочих средств измерений на месте их эксплуатации.
Переносной манометр содержит переключатели единиц измерений и диапазонов измерений, ручной насос, регулятор объема, корректор нуля и штуцер для подключения измеряемого давления. Питание прибора осуществляется от батареек напряжением 12В или от внешнего источника питания.
Однако основное назначение деформационных манометров состоит в удовлетворении потребностей различных отраслей промышленности в измерении давления, так как в каждой отрасли существуют свои требования к условиям эксплуатации, формам представления информации, точности и надежности, необходимым габаритным размерам и массе, стоимости приборов и пр. Все это требует совершенствования различных параметров и свойств деформационных манометров, специфика которых определяется их назначением и принципом действия.
Деформационные манометры, основанные на электрических методах преобразования (индуктивные, емкостные и др.), обеспечивая достаточно высокую точность, нуждаются в совершенствовании методов защиты их электрических цепей от воздействия внешних электрических и магнитных полей, особенно при необходимости размещения на расстоянии УЧЭ и электроники.
Дальнейшее развитие получают металлические и полупроводниковые тензорезистивные деформационные манометры.
Технология изготовления кремниевых полупроводниковых тензодатчиков в настоящее время отработана достаточно хорошо и ее совершенствование будет продолжаться по мере развития микроэлектроники, Однако при температуре выше 200°С полупроводниковый кремний теряет свою тензочувствительность, превращаясь в обычный проводник, что не допускает их применение в условиях высоких температур (внутри работающих автомобильных и реактивных двигателей, в буровых установках глубокого бурения и пр.). Весьма перспективна для этих целей замена кремния на карбид кремния (карборунд). В настоящее время уже созданы транзисторы из карбида кремния на подложке из его окислов, нанесенной на металлическую мембрану. Полупроводниковые свойства такого тензорезистора при температуре 650°С аналогичны свойствам обычного кремниевого тензорезистора при температуре 20°С.
В настоящее время проводятся также разработки полупроводниковых тензорезисторов, предназначенных для работы в условиях низких температур (сверхпроводящие магнитные системы термоядерных установок, криогенные накопители энергии, реактивные двигатели на сжиженном водороде и пр.) в диапазоне от 2 до 100К (от -271 до -173° С). В этих условиях чистые полупроводники превращаются в диэлектрики. Введение в кремний примесей позволяет сохранить тензочувствительность, хотя она существенно снижается. В нашей стране разработан датчик такого типа.
Глава 2. МЕТОДЫ КОСВЕННЫХ ИЗМЕРЕНИЙ ДАВЛЕНИЯ
В отличие от методов прямых измерений давления, на которых основаны рассмотренные ранее жидкостные, поршневые и деформационные манометры, методы косвенных базируются на измерении физических величин (температуре, объеме), значения которых связаны с давлением известными физическими закономерностями, или на изменении физических свойств измеряемой среды под действием давления (теплопроводности, вязкости, электропроводности и пр.).
Косвенные методы, как правило, находят применение в тех случаях, когда прямые методы измерения давления трудно осуществимы, например, при измерении весьма малых давлений (вакуумные измерения) или при измерениях сверхвысоких давлений.
2.1. Косвенные методы, основанные на уравнении состояния идеального газа
Связь между важнейшими термодинамическими параметрами газа определяется соотношением
pV = const, (8)
где р — абсолютное давление газа; Т — абсолютная температура газа; V — объем, занимаемый газом.