Методы измерений
Рефераты >> Физика >> Методы измерений

Перспективы развития поршневых манометров тесно связаны с об­щим развитием науки и техники. Здесь, в первую очередь, следует отме­тить достижения в создании новых материалов поршневых пар, повы­шающих точность их изготовления, прочностные характеристики и изно­состойкость, а также достижения в развитии микроэлектроники, пред­ставляющие новые возможности автоматизации поршневых манометров.

Повышение качества изготовления поршневых пар — одна из важней­ших задач в развитии поршневой манометрии. Применение в качестве материалов поршневых пар сверхтвердых сплавов на основе карбида вольфрама, прочностные характеристики которых (твердость, модуль упругости) существенно выше, чем у обычно применяемых легирован­ных сталей, а температурный коэффициент линейного расширения ниже, позволяет соответственно снизить влияние измеряемого давления и тем­пературы на постоянство эффективной площади поршня и ее стабиль­ность в период эксплуатации манометра.

1.3. Деформационные манометры

По мере развития промышленности, особенно в связи с появлением паровых машин и железных дорог, потребовались более удобные, чем жидкостные маномет­ры приборы.

Первый деформационный манометр с трубчатым чувствительным элементом был изобретен случайно. Рабочий, при изготовлении змеевика для дистилляционного аппарата, сплющил поперечное сечение цилиндрической трубки, изогнутой по спирали. Тогда, чтобы восстановить форму трубки, один конец ее заглушили, а в другой конец насосом дали давление воды. При этом часть трубки с деформиро­ванным сечением приняла цилиндрическую форму, а спираль на этом участке разо­гнулась. Этот эффект был использован немецким инженером Шинцем, который в 1845 г. применил трубчатый чувствительный элемент для измерения давления.

Простота и компактность деформационных манометров, возможность их применения в различных условиях эксплуатации очень быстро поставили их на первое место в технике измерения давления практически во всех отраслях народного хозяйства.

Диапазон измерений деформационных манометров охватывает почти 10 порядков, простираясь от 10 Па (1 мм вод.ст.) до 1-2 ГПа (более 10000 кгс/см2). При этом достигается высокая точность измерений, в отдельных случаях погреш­ности измерений не превышают 0,02-0,05 %.

1.3.1. Основные принципы преобразования давления деформационным манометром

Принципиальное отличие деформационных манометров от жидкост­ных и поршневых состоит в применении упругого чувствительного эле­мента (УЧЭ) в качестве первичного преобразователя давления. Чувстви­тельный элемент, воспринимающий измеряемое давление, представляет собой упругую оболочку, которая обычно выполняется в форме тела вращения, причем толщина стенки оболочки существенно меньше ее внешних размеров. Под действием измеряемого давления упругая обо­лочка деформируется так, что в любой точке оболочки возникают напря­жения, уравновешивающие действующее на нее давление.

Понятие „деформационный манометр" в общем виде может быть сформулировано следующим образом. Деформационный манометр- ма­нометр, в котором измеряемое давление, действующее на упругую обо­лочку УЧЭ, уравновешивается напряжениями, которые возникают в ма­териале упругой оболочки. Таким образом УЧЭ преобразует давление, являющееся входной величиной, в выходную величину, несущую изме­рительную информацию о значении давления. Для УЧЭ естественно вы­брать в качестве выходной величины в зависимости от принципа дейст­вия деформационного манометра: перемещение заданной точки УЧЭ; напряжение в материале заданной точки и усилие, развиваемое УЧЭ под действием давления.

Выбор того или иного выходного сигнала УЧЭ определяет способы его дальнейшего преобразования для получения результатов измерения давления, а, следовательно, и принцип действия деформационного мано­метра. В технике измерения давления нашли применение два основных ме­тода: метод прямого преобразования и метод уравновешивающего пре­образования (рис.7).

По методу прямого преобразования (рис. 7, а) все преобразования информации о значении давления проводятся в направлении от УЧЭ через посредство промежуточных преобразователей П1, П2, . . ., Пn к устройству И, представляющему резуль­таты измерений давления в требуемой форме. При этом суммарная погреш­ность преобразования опре­деляется погрешностями всех преобразователей, вхо­дящих в измерительный ка­нал.

Рис. 7. Методы измерения давления

Метод уравновешива­ющего преобразования (рис. 7, б) характеризу­ется тем, что используются две цепи преобразователей: цепь прямого преобразования, состоящая из цепи промежуточных преоб­разователи П1, П2, . . ., Пn, выходной сигнал которой Увых поступает на указатель результата измерений И и, одновременно на цепь обратного преобразования, состоящей из преобразователя ОП. Метод уравновешивания состоит в том, что усилие N, развиваемое УЧЭ, уравновешивается усилием Nоп, создаваемым обратным преобразователем ОП выходного сигнала Iвых цепи прямого преобразования. Поэтому на вход последней поступает лишь отклонение заданной точки УЧЭ от положения равновесия. В отличие от предыдущего метода суммарная погрешность преобра­зования в данном случае почти полностью определяется погрешностью обратного преобразователя. Однако применение метода уравновешивания приводит к усложнению конструкции деформационного манометра В зависимости от назначения и принципа действия отдельные звенья измерительных цепей деформационных манометров могут конструктивно выполняться в виде самостоятельных блоков. Во многих случаях, на­пример, при жестких эксплуатационных условиях на объекте измерения (повышенная или пониженная температура, высокий уровень вибрации труднодоступность места подключения и пр.) целесообразно свести к минимуму количество звеньев, находящихся непосредственно на объекте Конструктивная совокупность этих измерительных элементов с обяза­тельным включением в нее УЧЭ называется датчиком. В то же время указатель результата измерений должен находиться в месте, с более благоприятными условиями, удобном для наблюдателя. Это же касается и остальной части измерительной цепи. Блочный принцип построения целесообразен также и с точки зрения изготовления манометров на разных предприятиях при массовом производстве.

В этой связи следует остановиться на часто применяемом понятии "измерительный преобразователь давления" (ИПД). В принципе, ИПД — это составная часть измерительной цепи многих современных деформа­ционных манометров, включающая промежуточный преобразователь с унифицированным выходным сигналом. Поэтому выделение ИПД в самостоятельный раздел нецелесообразно из-за неизбежности повторов при их описании. В то же время ИПД по функциональным возможностям имеет более широкое применение, чем манометры.

1.3.2. Упругие чувствительные элементы деформационных манометров (УЧЭ)

Исторически первыми получили развитие деформационные мано­метры, в которых мерой давления является деформация УЧЭ (переме­щение заданной точки его упругой оболочки). Эти манометры широко применяются и в настоящее время благодаря относительной простоте преобразования перемещения в информацию об измеряемом давлении. Вместе с тем, широкое распространение получили деформационные ма­нометры, основанные на непосредственном преобразовании в информа­цию об измеряемом давлении напряжений (методы прямого преобразо­вания), а также способы силовой компенсации измеряемого давления (методы уравновешивания). Однако во всех случаях применяются одни и те же типы УЧЭ. Основные типы УЧЭ: мембраны, мембранные короб­ки, сильфоны и трубчатые пружины (рис. 8).


Страница: