Связанные контура
Первый способ настройки называют методом частного резонанса, причем в зависимости от того, параметры первого или второго контура участвуют в настройке, достигается соответственно первый или второй частный резонанс. При частном резонансе хотя и получается максимум тока во втором контуре, но этот максимум не является самым большим, так как при обеспечении равенства Х1э= 0 еще не выполняется условие r1=Rвн которое достигается соответствующим подбором связи между контурами. Связь, обеспечивающую максимальную мощность (ток) во втором контуре, называют оптимальной. Подбор ее производится постепенно с последующей подстройкой контура после очередной установки связи, так как при каждом изменении связи нарушается условие Х1э= 0 за счет изменения Хвн. Если до изменения связи система была настроена в резонанс изменением параметров первого контура (первый частный резонанс), то после каждого очередного изменения связи необходимо подстраивать систему в резонанс изменением параметров первого контура, чтобы все время выполнялось условие Х1э= Х1э + Хвн= 0.
Таким образом, при таком постепенном подборе связи с последующей подстройкой контуров может быть достигнута оптимальная связь, обеспечивающая самый большой максимум тока во втором контуре. Данный способ настройки носит название метода сложного резонанса. Проанализируем его математически.
Если обратиться к выражению для тока во втором контуре [см (14)], то при достижении, например, первого частного резонанса оно примет вид:
Далее положив, что при изменении связи (Хсв) условие Х1э=0 все время поддерживается неизменным подстройкой параметров первого контура, найдем оптимальное сопротивление связи (Хсв.опт), обеспечивающее самый большой максимум тока во втором контуре (I2махмах). Для этого необходимо взять производную токов I2мах по
Хсв и приравнять ее нулю
откуда , или , где .
Таким образом, подтверждено, что при оптимальной связи r1=Rвн, причем
(27)
Подставив значение Хсв.опт в выражение для тока I2mах, можно найти самый большой максимум тока во втором контуре
(28)
Однако на практике используют так называемый метод полного резонанса, при котором сначала достигается равенство Х1э= 0 по описанному второму способу настройки, когда каждый контур системы настраивается в резонанс независимо от другого. Затем подбирается оптимальная связь между контурами по самому большому току во втором контуре (I2max max). В случае полного резонанса при изменении связи между контурами подстройка их для выполнения условия
Х1э= Х1-Хcв2/Z2=0 нужна, так как ввиду того что Х1= Х2=0, это условие выполняется при любой связи.
Обратимся в случае полного резонанса к выражению для тока во втором контуре (14) и исследуем его на экстремум, т. е. определим оптимальную связь, обеспечивающую I2max max , как это было сделано при сложном резонансе. С учетом того, что Х1= Х2=0, (14) принимает вид
Взяв производную тока I2max по Хсв
и приравняв ее к нулю, найдем
или
где
Таким образом, в случае полного резонанса также подтверждено, что при оптимальной связи r1=Rвн, причем При подстановке этого значения в выражение для I2max получаем Как видно из сравнения последнего выражения с (28), значение самого большого тока во втором контуре при сложном и полном резонансах одинаковое, но в случае сложного резонанса оно достигается при большем значении Хсв.опт, т.е. при большей связи между контурами.
Прохождение радиоимпульса через двухконтурную связанную систему
Для анализа возьмем импульс с прямоугольной огибающей. Частота заполнения не модулирована и равна w0. Амплитуда импульса равна 1в, а Q0=0.
В качестве двухконтурной избирательной системы рассматривается полосовой усилитель схематически изображенный на рис. 8. Контуры идентичны, резонансные частоты контуров wр1=wр2=wр=w0. Таким бразом, в данном случае Dw = 0.
Рис. 8.
Передаточная функция такого усилителя
(29)
где
Заменяя iW на Р, получаем
(30)
Обратимся к опредилению сигнала на выходе системы. Сначала рассмотрим явления на фронте импульса. При этом задача сводится к включению гармонической э.д.с. в момент t = 0. Подставив в общее выражение спектральную плотность SA(p) по формуле и коэффициент передачи К1(p) по формуле (30), получим
Полюсы подынтегральной функции
Определяя вычеты, получим следующее окончательное выражение для комплексной огибающей выходного сигнала (угол Q0 принят равным нулю)
(31)
Вчастном случае ‘критической связи’ (kQ = 1) получаем
(32)
Множитель eip/2 учитывет сдвиг фазы выходного напряжения на 900 относительно входного сигнала.
График изображен на рис. 9 (участок от t = 0 до t = T).
Рис. 9.
Рассмотрим теперь явления в цепи в конце импульса, начиная с момента t = T, где T – длительность импульса. Ясно, что после прекращения действия внешней силы в системе может существовать только свободное колебание. Структура этого колебания легко может быть выявлена, если прекращение импульса рассматривать как результат включения в момент t = T новой э.д.с., компенсирующей э.д.с. сигнала. Для этой компенсируещей э.д.с. решение имеет такой же вид, как и (31), но отличается только знаком, который должен быть обратным знаку правой части выражения (31), и сдвигом начала отсчета времени из нуля в точку t = T.