Связанные контура
Рефераты >> Физика >> Связанные контура

(12)

На основании (7), с учетом того что и имеем

(13)

где и . Запишем Модуль (13) с учетом (12) и (9)

Выражения (12) и (14) представляют собой уравнения резонансных характеристик для I1 и I2 соответственно в неявной относительно частоты форме. Таким образом, если построить зависимости модулей I1 и I2 от частоты, то это и будут амплитудно-частотные резонансные характеристики. При построении их будем исходить из двух случаев связи между контурами; слабой и сильной. Сначала займемся построе­нием I1(w). Как видно из (12), частотную зависимость I1 определяет частотная зависимость Z1э(w), поскольку э. д. с. источника Е от частоты не зависит. Таким образом, построение сводится сначала к построению зависимости Z1э(w), а затем — зависимости I1(w) как частного от деления Е на Z1э.

Выразив модуль Z1э(w) через компоненты

построим попарно зависимости r1 и rвн , Х1 и Хвн от частоты, а Z1э найдем графически, как геометрическую сумму r1+ Rвн и Х1+ Хвн. I1 строим в соответствии с (12). Построение проводим при небольших расстройках относительно резонансной частоты. Получаемые зависи­мости при слабой связи между контурами имеют вид, показанный на рис. 3, а при сильной связи—на рис. 4.

Рис. 3. Частотные зависимости входного сопротивления, его составляющих и тока I1 системы двух связанных контуров при слабой связи между ними

Рис. 4. Частотные зависимости входного сопротивления, его составляющих и тока I1 системы двух связанных контуров при сильной связи между ними

Как видно, при слабой связи между контурами вследствие малости ХВН по сравнению с Х1 кривая X1э (w) пересекает ось частот только в одной точке wо. При сильной связи между контурами вследствие значительной величины ХВН, которая на некоторых частотах превы­шает по абсолютной величине Х1, имея обратный знак, суммарная кри­вая Х1э (w) пересекает ось частот в трех точках: w01 , w0 и w02. Други­ми словами, результирующее реактивное сопротивление системы равно нулю не только на частоте w0, но и на частотах w01 и w02, называемых частотами связи. Учитывая еще то обстоятельство, что при сильной связи между контурами сопротивления RВН на частоте w0 и в близлежащей области большие, чем при слабой, понятен двугорбый харак­тер кривых Z1э(w) и I1(w) с максимумами на частотах w 1 и w 2.

Очевидно, имеется граничная связь, превышение которой ведет к двугорбости амплитудно-частотной резонансной характеристики то­ка первичного контура. Такая связь называется первичной критиче­ской связью, а соответствующий ей коэффициент связи — первичным критическим коэффициентом связи (kкр1). Амплитудно-частотную ре­зонансную характеристику вторичного тока строим на основании по­лученных характеристик первичного тока и (14). Для того чтобы можно было сравнивать амплитудно-частотные резонансные характерис­тики первичного и вторичного токов, их надо строить на одном рисун­ке по отношению к резонансным значениям Z2, т.е. и. . Согласно (14) Таким образом , для построения амплитудно-частотных характеристик вторичного то­ка достаточно перемножить координаты кривых I1 (w) / I1p и r2 /Z2 (w)

Указанные построения для связи, меньше критической, выполне­ны на рис. 5, а, а для связи, больше критической,— на рис. 2. 19, б. Как видно из рис. 5, б, двугорбость кривой первичного тока выра­жена резче, причем горбы разнесены дальше, чем у кривой вторично­го тока. Очевидно, возможна такая связь между контурами системы, когда двугорбость первичного тока уже наступит, а вторичного — еще нет. Такая связь, превышение которой ведет к появлению двугорбости у резонансной амплитудно-частотной характеристики вторичного тока, называется вторичной критической связью, а соответствующий ей коэффициент связи -вторичным критическим коэффициентом связи (kкр2).

Рис. 5. Амплитудно-частотные характеристики вторичного тока системы двух связанных контуров при слабой (а) и сильной (б) связях между ними

Максимальные значения вторичного тока I2 при связи, больше вторичной критической, наблюдаются на частотах связи w01 и w02, при которых Х1=0. Для того чтобы найти условия возникновения частот связи и определить их значения, (11) и (13) нужно предста­вить в явной относительно частоты форме и исследовать (13) на экс­тремум, т. е. установить, при каких относительных расстройках (e) вторичный ток будет максимальным и минимальным. Чтобы полу­чить выражения для I1 и I2 в явной относительно частоты форме, пере­пишем (11), подставив вместо Z1э его значение из (8)

Считая, что контуры настроены в резонанс (w1 = w2= w0), выне­сем за скобки в знаменателе w0L и, подставив на основании (2) получим

(15)

где ,

. (16)

Модуль тока равен

(17)

Подставив в (7) вместо М. его значение из (2) и домножив числитель и знаменатель (7) на w0 L2 , найдем,

(18)

где . Выражения (13) и (18) — идентичны. Взяв модуль (18) и подставив значение модуля I1 из (17), получим

(19)


Страница: