Связанные контура
Если частота питающего генератора равна резонансной частоте контуров, т. е. wг = w0 (e = 0), то (19) упрощается
В относительных единицах выражение, описывающее резонансную кривую для тока I 2, имеет вид
(20)
Выражения (17) и (19) соответствуют (12) и (14) и описывают амплитудно-резонансные характеристики токов I1 и I2 в явной относительно частоты (расстройки e) форме.
Исследуем (19) на экстремум, для чего продифференцируем (19) по e и приравняем производную нулю, т. е. dI 2 /de = 0. В результате получим . Данное уравнение имеет три корня:
(21)
При d1 = d2 получаем
(22)
Если первый корень (e1) действителен при любых соотношениях между k и d, то второй и третий корни (e2 и e3) имеют смысл только при k > d. При k<d подкоренное выражение будет мнимым и физического смысла не имеет. В этом случае физический смысл имеет только первый корень (e1), что говорит об одногорбости резонансной характеристики для I2. При k > d физический смысл имеют все три корня, что говорит о двугорбом характере резонансной характеристики для тока I2. Очевидно, вторичный критический коэффициент связи, лежащий на границе перехода от одногорбой кривой к двугорбой, на основании (21) получается тогда, когда корни (21) обращаются в нуль: При d1 = d2 имеем:
k кр2 = d. (23)
Чтобы получить выражения для частот связи при k > kкр2, в (22) надо подставить значение e = а/Q = 1 — w02/w2. Тогда
(24)
Именно на частотах w01 и w02 выполняется условие резонанса, благодаря чему ток /а достигает максимума (рис. 5, б).
Третья резонансная частота получается из условия e1 =0, или e1=1- w02/w2=0; отсюда w = w0. При k > kкр2 на частоте w0 резонансная характеристика тока I2 имеет впадину. При k < kкр2, когда физический смысл имеет только первый корень , системе связанных контуров свойственна лишь одна резонансная частота w0 на которой наблюдается максимум тока I2 (рис.5, а). Наличие одной резонансной частоты при k<kкр и появление частот связи при k>kкр хорошо иллюстрирует рис. 6.
Фазово-частотные резонансные характеристики системы двух связанных контуров представляют собой частотную зависимость фазового сдвига между токами и приложенной к системе э. д. с. Е. Как следует из (11), сдвиг фазы между током и э. д. с. Е зависит от угла -j1э, значение которого определяется (16). Сдвиг фазы между током и э. д. с. Е зависит от угла [см. (18) ] и отличается от сдвига фазы между током и э.д.с. Е углом . Фазово-частотные характеристики системы двух связанных контуров изображены на рис. 7.
Полоса пропускания системы двух связанных контуров.
В одиночном контуре относительная расстройка e = 2Dw/wо = 1/Q = d. Полоса пропускания системы может быть как меньше полосы пропускания одиночного контура (при k < kкр), так и больше ее (при k³ kкр). Самой широкой полосой пропускания системы двух связанных контуров будет такая, в пределах которой провал амплитудно-частотной резонансной характеристики системы лежит на уровне 1/ от максимального значения; при этом e=2Dw/w0 » 3.1d а коэффициент связи, обеспечивающий данную полосу, k=2.41d. Как видно, при этом полоса пропускания системы двух связанных контуров в три раза шире полосы пропускания одиночного колебательного контура. При критической связи (k = kкр= d), обеспечивающей наибольшее приближение резонансной характеристики в пределах полосы пропускания к прямоугольнику, e= 1,41d.
Рис.6. Зависимость резонансной частоты системы двух колебательных контуров от коэффициента связи
Рис.7. Фазово-частотные характеристики системы двух связанных контуров при различных коэффициентах связи
Энергетические соотношения в связанных контурах.
Рассмотрим, как распределяется мощность между связанными контурами в зависимости от степени их связи. При этом анализировать будем типичный для практики случаи, когда каждый из контуров в отдельности настроен в резонанс на частоту генератора w0 (т. е. Х1= 0, Х2= 0) и лишь потом подбирается связь между ними. Так как обычно выходным является второй контур и с ним связаны последующие каскады приемного устройства, то задача состоит в передаче максимальной энергии во второй контур.
Для оценки эффективности передачи энергии во второй контур введем понятие к.п.д. системы двух связанных контуров как отношение мощности, выделяемой во втором контуре, к суммарной мощности в первом и втором контурах, т. е.
(25)
где и Подставив в (25) значения мощностей Р1 и Р2 получим Ток I2 заменим его значением из (13) при Х2= 0, т.е. I2=I1Xсв/r2. Тогда
Из (10) следует, что Xсв/r2=Rвн при Х2=0. Таким образом,
(26)
Из курса электротехники известно, что максимальная мощность отдается в нагрузку тогда, когда внутреннее сопротивление генератора равно сопротивлению нагрузки. Для случая связанных контуров это равносильно равенству r1=Rвн с точки зрения передачи максимальной энергии во второй контур из первого. При этом, как видно из (26), h=0.5, т. е. половина мощности теряется в первом контуре.
Настройка системы двух связанных контуров.
При желании передать во второй контур максимальную энергию, обеспечивающую и максимальны ток в нем, прибегают к настройке системы связанных контуров. Для того чтобы получить самый большой ток во втором контуре, необходимо выполнить два условия: с одной стороны, обеспечить равенство Х1э=0, а с другой, -r1=Rвн Первое условие может быть выполнено двумя способами: 1) настройкой системы (при наличии определенной связи между контурами) на частоту генератора изменением параметров только одного из контуров; 2) настройкой на частоту генератора сначала первого контура при разомкнутом втором, а затем подключением и настройкой второго контура при достаточно слабой связи между контурами, чтобы ослабить взаимное влияние.