Криптография

2. Эллиптические фунции – реализация метода открытых ключей

2.1.Системы с открытым ключом

Как бы ни бы­ли слож­ны и на­деж­ны крип­то­гра­фи­че­ские сис­те­мы - их сла­бое ме­ст при прак­ти­че­ской реа­ли­за­ции - про­блема рас­пре­де­ле­ния клю­чей. Для то­го, что­бы был воз­мо­жен об­мен кон­фи­ден­ци­аль­ной ин­фор­ма­ци­ей ме­ж­ду дву­мя субъ­ек­та­ми ИС, ключ дол­жен быть сге­не­ри­ро­ван од­ним из них, а за­тем ка­ким-то об­ра­зом опять же в кон­фи­ден­ци­аль­ном по­ряд­ке пе­ре­дан дру­го­му. То есть , в об­щем слу­чае для пе­ре­да­чи клю­ча опять же тре­бу­ет­ся ис­поль­зо­ва­ние ка­кой-то крип­то­си­сте­мы.

Для ре­ше­ния этой про­бле­мы на ос­но­ве ре­зуль­та­тов, по­лу­чен­ных классической и со­вре­мен­ной ал­геб­рой, бы­ли пред­ло­же­ны сис­те­мы с от­кры­тым клю­чом.

Суть их со­сто­ит в том, что ка­ж­дым ад­ре­са­том ИС ге­не­ри­ру­ют­ся два клю­ча, свя­зан­ные ме­ж­ду со­бой по оп­ре­де­лен­но­му пра­ви­лу. Один ключ объ­яв­ля­ет­ся от­кры­тым, а дру­гой за­кры­тым. От­кры­тый ключ пуб­ли­ку­ет­ся и дос­ту­пен лю­бо­му, кто же­ла­ет по­слать со­об­ще­ние ад­ре­са­ту. Секретный ключ сохраняется в тайне.

Ис­ход­ный текст шиф­ру­ет­ся от­кры­тым клю­чом адресата и пе­ре­да­ет­ся ему. За­шиф­ро­ван­ный текст в прин­ци­пе не мо­жет быть рас­шиф­ро­ван тем же от­кры­тым клю­чом. Де­шиф­ро­ва­ние со­об­ще­ние воз­мож­но толь­ко с ис­поль­зо­ва­ни­ем за­кры­то­го клю­ча, ко­то­рый из­вес­тен толь­ко са­мо­му ад­ре­са­ту.

Рис.2.1.Реализация процедуры шифрования с открытым ключом.

Крип­то­гра­фи­че­ские сис­те­мы с от­кры­тым клю­чом ис­поль­зу­ют так называемые не­об­ра­ти­мые или од­но­сто­рон­ние функ­ции, ко­то­рые об­ла­да­ют сле­дую­щим свой­ст­вом: при за­дан­ном зна­че­нии x от­но­си­тель­но про­сто вы­чис­лить зна­че­ние f(x), од­на­ко ес­ли y=f(x), то нет про­сто­го пу­ти для вы­чис­ле­ния зна­че­ния x.

Мно­же­ст­во клас­сов не­об­ра­ти­мых функ­ций и по­ро­ж­да­ет все раз­но­об­ра­зие сис­тем с от­кры­тым клю­чом. Од­на­ко не вся­кая не­об­ра­ти­мая функ­ция го­дит­ся для ис­поль­зо­ва­ния в ре­аль­ных ИС.

В са­мом оп­ре­де­ле­нии не­об­ра­ти­мо­сти при­сут­ст­ву­ет не­оп­ре­де­лен­ность. Под необратимостью понимается не теоретическая необратимость, а практическая невозможность вычислить обратное значение используя современные вычислительные средства за обозримый интервал времени.

По­это­му что­бы га­ран­ти­ро­вать на­деж­ную за­щи­ту ин­фор­ма­ции, к сис­те­мам с от­кры­тым клю­чом (СОК) предъ­яв­ля­ют­ся два важ­ных и оче­вид­ных тре­бо­ва­ния:

1. Пре­об­ра­зо­ва­ние ис­ход­но­го тек­ста долж­но быть не­об­ра­ти­мым и ис­клю­чать его вос­ста­нов­ле­ние на ос­но­ве от­кры­то­го клю­ча.

2. Оп­ре­де­ле­ние за­кры­то­го клю­ча на ос­но­ве от­кры­то­го так­же долж­но быть не­воз­мож­ным на со­вре­мен­ном тех­но­ло­ги­че­ском уров­не. При этом же­ла­тель­на точ­ная ниж­няя оцен­ка сложности (ко­ли­че­ст­ва опе­ра­ций) рас­кры­тия шиф­ра.

Ал­го­рит­мы шиф­ро­ва­ния с от­кры­тым клю­чом по­лу­чи­ли ши­ро­кое рас­про­стра­не­ние в со­вре­мен­ных ин­фор­ма­ци­он­ных сис­те­мах. Так, ал­го­ритм RSA стал ми­ро­вым стан­дар­том де-фак­то для от­кры­тых сис­тем и ре­ко­мен­до­ван МККТТ.

Вообще же все предлагаемые сегодня криптосистемы с открытым ключом опираются на один из следующих типов необратимых преобразований:

1. Разложение больших чисел ан простые множители.

2. Вычисление логарифма в конечном поле.

3. Вычисление корней алгебраических уравнений.

Здесь же сле­ду­ет от­ме­тить, что ал­го­рит­мы криптосистемы с открытым ключом (СОК) мож­но ис­поль­зо­вать в трех на­зна­че­ни­ях.

1. Как са­мо­стоя­тель­ные сред­ст­ва за­щи­ты пе­ре­да­вае­мых и хра­ни­мых дан­ных.

2. Как сред­ст­ва для рас­пре­де­ле­ния клю­чей. Ал­го­рит­мы СОК бо­лее тру­до­ем­ки, чем тра­ди­ци­он­ные крип­то­си­сте­мы. По­это­му час­то на прак­ти­ке ра­цио­наль­но с по­мо­щью СОК рас­пре­де­лять клю­чи, объ­ем ко­то­рых как ин­фор­ма­ции не­зна­чи­те­лен. А по­том с по­мо­щью обыч­ных ал­го­рит­мов осу­ще­ст­в­лять об­мен боль­ши­ми ин­фор­ма­ци­он­ны­ми по­то­ка­ми.

3. Сред­ст­ва ау­тен­ти­фи­ка­ции поль­зо­ва­те­лей. Об этом бу­дет рас­ска­за­но в главе «Электронная подпись».

Ниже рассматриваются наиболее распространенные системы с открытым ключом.

Не­смот­ря на до­воль­но боль­шое чис­ло раз­лич­ных СОК, наиболее популярна - криптосистема RSA, разработанная в 1977 году и по­лу­чив­шая на­зва­ние в честь ее соз­да­те­лей: Рона Ри­ве­ста[4], Ади Ша­ми­ра и Леонарда Эй­дель­ма­на.

Они вос­поль­зо­ва­лись тем фак­том, что на­хо­ж­де­ние боль­ших про­стых чи­сел в вы­чис­ли­тель­ном от­но­ше­нии осу­ще­ст­в­ля­ет­ся лег­ко, но раз­ло­же­ние на мно­жи­те­ли про­из­ве­де­ния двух та­ких чи­сел прак­ти­че­ски не­вы­пол­ни­мо. До­ка­за­но (тео­ре­ма Ра­би­на), что рас­кры­тие шиф­ра RSA эк­ви­ва­лент­но та­ко­му раз­ло­же­нию. По­это­му для лю­бой дли­ны клю­ча мож­но дать ниж­нюю оцен­ку чис­ла опе­ра­ций для рас­кры­тия шиф­ра, а с уче­том про­из­во­ди­тель­но­сти со­вре­мен­ных ком­пь­ю­те­ров оце­нить и не­об­хо­ди­мое на это вре­мя.

Воз­мож­ность га­ран­ти­ро­ван­но оце­нить за­щи­щен­ность ал­го­рит­ма RSA ста­ла од­ной из при­чин по­пу­ляр­но­сти этой СОК на фо­не де­сят­ков дру­гих схем. По­это­му ал­го­ритм RSA ис­поль­зу­ет­ся в бан­ков­ских ком­пь­ю­тер­ных се­тях, осо­бен­но для ра­бо­ты с уда­лен­ны­ми кли­ен­та­ми (об­слу­жи­ва­ние кре­дит­ных кар­то­чек).

В настоящее время алгоритм RSA используется во многих стандартах, среди которых SSL, S-HHTP, S-MIME, S/WAN, STT и PCT.

2.2. Типы криптографических услуг

Сегодня безопасные решения используют некоторую комбинацию из пяти различных криптографических услуг. Эти услуги:

Проверка пользователя – введением пути в оперативную транзакцию, пользователь подтверждает, что это именно он.

Идентификация Начала координат Данных - обеспечение источника сообщения.


Страница: