Моделирование ЭВМ

5 5

vihod1.dat vihod2.dat

r(t)

1

0 t

5

vihod3.dat

Вывод:

1) С увеличением числа сдвигов характеристики чисел улучшаются.

2) Из приведенных 3-ех файлов самые качественные числа находятся в

файле vihod3.dat , т. к. числа в последовательности достаточно

независимы. Но в то же время нет согласованности по обеим

критериям.

4.1.2. Программный способ

При программном способе псевдослучайные числа нам необходимо сформировать методом умножения.

Суть метода: выбирается два n - разрядных числа X1 и X2. X1><0, X2><0. Затем X1 умножаем на X2 и получаем некоторое значение Y , у которого 2n - разрядов: Y=X1*X2. Из 2n - разрядного Y выбираем n - разрядное Х1 и Х2 и вновь полученные Х1, Х2 умножаем друг на друга. Далее все повторяется до тех пор пока не будет сформировано необходимое количество чисел.

Программа формирования ГСК на основе метода умножения приведена в Приложении № 2.

Полученные числа записываются в файл vi_gpsc1.dat и анализируются с помощью программы analize.

Определение числовых характеристик

Характеристика

Теоретич. значение

Статистич. значение

1

Мин.значение совокуп.

 

0.00068

2

Макс.значение совокуп

 

0.99995

3

Математич. ожидание

0.5

0.4928

4

Дисперсия

0.083

0.07822

5

Сред.квад.отклонение

0.1887

0.2796

Аппроксимация статистического распределения теоретической функцией

Проверка соответствия чисел последовательности требуемому распределению дает следующие результаты:

Критерий Хи-Квадрат:

Х2=12.9

С доверительной вероятностью 0.166 можно утверждать о согласованности теоретических и статистических данных.

Критерий Колмогорова:

Максимальная разность max| F(x)-F*(x) | = 0.0885

С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.

Определение характеристик корреляции

r(t)

1

0 t

5

Рис. 3. График изменения коэфф.

корреляции

Вывод:

Полученная по методу умножения последовательность СЧ, имеющих равномерный закон распределения удовлетворяет предъявленным требованиям по качеству и может быть использован в задачах моделирования, т. к.:

1) есть согласованность по критерию Колмогорова

2) числа не зависят друг от друга, о чем говорит график (Рис. 3.)

4.1.3. Выбор генератора РРПСЧ

Эффективность статистического моделирования и достоверность полученных результатов находятся в прямой зависимости от качества используемых в модели случайных последовательностей. Под качеством здесь понимается соответствие чисел последовательности заданной функции распределения (плотности распределения) и ее параметрам: М.О. и т.д.; независимость чисел последовательности друг от друга, т.е. отсутствие автокорреляции в последовательности случайных чисел.

Выберем генератор РРПСЧ, который используется для генерации времени между поступлениями заявок от пользователей.

Последовательность чисел, полученных аппаратным способом и хранящихся в файле vihod3.dat не совсем удовлетворяет предъявленным требованиям по качеству, т.к. нет согласия по критериям теоретических и статистических данных.

В пункте 3.4.1.2. мы делая вывод уже говорили о том, что генератор РРПСЧ сформированный программным способом (по методу умножения) можно использовать в задачах моделирования, но для простоты будем использовать встроенную функцию random( ), простую в программировании и имеющую хорошие характеристики.

4.2. Моделирование случайных воздействий,

имеющих неравномерное распределение

Для стохастической модели требуются числа распределенные по нормальному закону и по экспоненциальному закону.

Напишем функции формирования чисел по требуемому закону распределения. Эти числа запишем в файл. Оценим качество полученных последовательностей ПСЧ, пользуясь автоматизированной системой analize. Проанализируем результаты исследования и сделаем вывод о качестве каждой последовательности и о возможности их использования в стохастической модели.

Сведения о непрерывных случайных величинах

Закон распределения случайных величин

Нормальный

N(m,s)

Экспоненц-ый

s(1,1/l)=Э(l)

Аналитическое выражение плотности вероятности f(x)

1 -(x-m)

f(x)=-------- e 2s

sÖ2p

-lx

f(x)=l e

Определяющие параметры

| m | <

s > 0

l > 0

Числовые m характеристики D

m

s

1/l

1/l

Алгоритм получения случайной величины

xi=Ö-2 ln z1 cos2p z2

xi+1=Ö-2 ln z1 cos2p z2

( m=0; D=1 )

1

xi=- ---- ln zi

l

Область значений случайной величины

   


Страница: