Моделирование ЭВМРефераты >> Программирование и компьютеры >> Моделирование ЭВМ
5 5
vihod1.dat vihod2.dat
r(t)
1
0 t
5
vihod3.dat
Вывод:
1) С увеличением числа сдвигов характеристики чисел улучшаются.
2) Из приведенных 3-ех файлов самые качественные числа находятся в
файле vihod3.dat , т. к. числа в последовательности достаточно
независимы. Но в то же время нет согласованности по обеим
критериям.
4.1.2. Программный способ
При программном способе псевдослучайные числа нам необходимо сформировать методом умножения.
Суть метода: выбирается два n - разрядных числа X1 и X2. X1><0, X2><0. Затем X1 умножаем на X2 и получаем некоторое значение Y , у которого 2n - разрядов: Y=X1*X2. Из 2n - разрядного Y выбираем n - разрядное Х1 и Х2 и вновь полученные Х1, Х2 умножаем друг на друга. Далее все повторяется до тех пор пока не будет сформировано необходимое количество чисел.
Программа формирования ГСК на основе метода умножения приведена в Приложении № 2.
Полученные числа записываются в файл vi_gpsc1.dat и анализируются с помощью программы analize.
Определение числовых характеристик
№ |
Характеристика |
Теоретич. значение |
Статистич. значение |
1 |
Мин.значение совокуп. |
0.00068 | |
2 |
Макс.значение совокуп |
0.99995 | |
3 |
Математич. ожидание |
0.5 |
0.4928 |
4 |
Дисперсия |
0.083 |
0.07822 |
5 |
Сред.квад.отклонение |
0.1887 |
0.2796 |
Аппроксимация статистического распределения теоретической функцией
Проверка соответствия чисел последовательности требуемому распределению дает следующие результаты:
Критерий Хи-Квадрат:
Х2=12.9
С доверительной вероятностью 0.166 можно утверждать о согласованности теоретических и статистических данных.
Критерий Колмогорова:
Максимальная разность max| F(x)-F*(x) | = 0.0885
С доверительной вероятностью 0.999 можно утверждать о согласованности теоретических и статистических данных.
Определение характеристик корреляции
r(t)
1
0 t
5
Рис. 3. График изменения коэфф.
корреляции
Вывод:
Полученная по методу умножения последовательность СЧ, имеющих равномерный закон распределения удовлетворяет предъявленным требованиям по качеству и может быть использован в задачах моделирования, т. к.:
1) есть согласованность по критерию Колмогорова
2) числа не зависят друг от друга, о чем говорит график (Рис. 3.)
4.1.3. Выбор генератора РРПСЧ
Эффективность статистического моделирования и достоверность полученных результатов находятся в прямой зависимости от качества используемых в модели случайных последовательностей. Под качеством здесь понимается соответствие чисел последовательности заданной функции распределения (плотности распределения) и ее параметрам: М.О. и т.д.; независимость чисел последовательности друг от друга, т.е. отсутствие автокорреляции в последовательности случайных чисел.
Выберем генератор РРПСЧ, который используется для генерации времени между поступлениями заявок от пользователей.
Последовательность чисел, полученных аппаратным способом и хранящихся в файле vihod3.dat не совсем удовлетворяет предъявленным требованиям по качеству, т.к. нет согласия по критериям теоретических и статистических данных.
В пункте 3.4.1.2. мы делая вывод уже говорили о том, что генератор РРПСЧ сформированный программным способом (по методу умножения) можно использовать в задачах моделирования, но для простоты будем использовать встроенную функцию random( ), простую в программировании и имеющую хорошие характеристики.
4.2. Моделирование случайных воздействий,
имеющих неравномерное распределение
Для стохастической модели требуются числа распределенные по нормальному закону и по экспоненциальному закону.
Напишем функции формирования чисел по требуемому закону распределения. Эти числа запишем в файл. Оценим качество полученных последовательностей ПСЧ, пользуясь автоматизированной системой analize. Проанализируем результаты исследования и сделаем вывод о качестве каждой последовательности и о возможности их использования в стохастической модели.
Сведения о непрерывных случайных величинах
Закон распределения случайных величин |
Нормальный N(m,s) |
Экспоненц-ый s(1,1/l)=Э(l) |
Аналитическое выражение плотности вероятности f(x) |
1 -(x-m) f(x)=-------- e 2s sÖ2p |
-lx f(x)=l e |
Определяющие параметры |
| m | < s > 0 |
l > 0 |
Числовые m характеристики D |
m s |
1/l 1/l |
Алгоритм получения случайной величины |
xi=Ö-2 ln z1 cos2p z2 xi+1=Ö-2 ln z1 cos2p z2 ( m=0; D=1 ) |
1 xi=- ---- ln zi l |
Область значений случайной величины |