Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргументаРефераты >> Программирование и компьютеры >> Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента
Коэффициенты удобнее всего вычислять по следующей рекуррентной формуле, которая непосредственно вытекает из :
; ;
Таблица разностей:
x |
y |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| ||
|
|
|
| |||
|
|
| ||||
|
|
Таблицу можно продолжать строить, в нашем случае до последнего , число разностей зависит от количества значений y. Таблица разностей высчитывается
, и так далее(можно заметить такую систему в приведенной выше таблице)
Тестовый пример.
П р и м е р. Функция задана таблицей на сегменте . Определим при помощи интерполяции значение .
Р е ш е н и е. По данным значениям функции составляем таблицу разностей (табл. 1), из которых видно, что четвертые разности в данном примере практически равны постоянны, а пятые разности практически равны нулю, и поэтому мы их в дальнейших вычислениях не будем принимать во внимание.