Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргументаРефераты >> Программирование и компьютеры >> Построение интерполяционного многочлена и вычисление по нему значения функции для заданного аргумента
Эффективным аппаратом приближения функции являются интерполяционные сплайны, но их построение в ряде частных случаях требует значительных вычислительных затрат.
На практике чаще всего используются параболические или кубические полиноминальные сплайны. Интерполяция кубическим сплайном дефекта 1 для функции относительно сетки называет функцию , являющуюся многочленом 3-й степени на каждом из отрезков , принадлежащую классу дважды непрерывно дифференцируемых функции и удовлетворяющую условиям
.
При таком определении кубического сплайна, он имеет еще свободных параметра, для нахождения которых на сплайн налагаются дополнительные краевые условия. Например или и , или некоторые другие.
Полиномиальный интерполяционный сплайн произвольной степени m дефекта r определяется как функция , удовлетворяющая, кроме условий и , еще дополнительно условиям совпадения в узлах сетки значений функции и интерполированной функции и их производных до некоторого порядка.
Часто при обработке эмпирических данных коэффициенты в определяют исходя из требования минимизации суммы
- заданные числа, .
Такое построение функции называют интерполированием по методу наименьших квадратов.
Интерполирование функций многих переменных имеет ряд принципиальных и алгебраических трудностей. Например в случае алгебраической интерполяции интерполяционный многочлен Лагранжа фиксированной степени, вообще говоря, не существует для произвольной схемы различных узлов интерполяции. В частности для функций двух переменных такой многочлен суммарной степени не выше n может быть построен по узлам лишь при условии, что эти узлы не лежат на алгебраической кривой порядка n.
Другой поход к интерполированию функции многих переменных стоит в том, что сначала интерполируется функция по переменной при фиксированных потом по следующей переменной при фиксированных и т.д. интерполяционные сплайны для функций многих переменных определяются по многомерной сетке при соответствующих изменениях по аналогии с одномерным случаем.
Интерполирование функций и численные методы. Интерполирование функции используется:
1. для замены сложно вычисляемой функции другой, вычисляемой проще
2. для приближенного восстановления функции на всей области задания по значениям её в отдельных точках или по другим известным величинам
3. для получения сглаживающих функций
4. для приближенного нахождения предельных значений функции
5. в задачах ускорения сходимости последовательностей и рядов и в других вопросах.
Общие идеи построения интерполяционных методов решения уравнения =0 и систем уравнения , одни и те же. Трудности задачи интерполирования функций многих преременных особенно сказывается при исследовании и практическом использовании такого рода методов для большого числа уравнений. В основу получении интерполяционных методов решения уравнения =0 положена замена функции ее интерполяционным многочленом и последующим решением уравнения =0 берутся за приближенные решении уравнения =0 интерполяционный многочлен используется так же при построении итерационных методов решения уравнения =0.
Например взяв за корень линейного интерполяционного алгебраического многочлена, построенного по значениям и в узле или по значениям и в узлах и , приходят соответственно к методу Ньютона и метода секущих
,
где - разделенная разность функций для узлов и .
Другой подход к построению численных методов решения уравнения =0 основан на интерполировании обратной функции . Пусть в качестве интерполяционной формулы для функции взят интерполяционный алгебраический многочлен Лагранжа , построенный по узлам Тогда за следующее приближению к корню уравнения =0 берется величина .